High-stretchable hydroxyapatite bionanocomposite for high-performance triboelectric nanogenerators

Thien Trung Luu¹, Nghia Dinh Huynh¹, Hakjeong Kim¹, Zong-Hong Lin^{*2}, Dukhyun Choi^{*1}

¹School of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea

²Department of Biomedical Engineering, National Taiwan University, Taipei, 10617, Taiwan

*Corresponding author. Email address: bred96@skku.edu (D. Choi)

Movie S1: Vertical contact mode LED lighting (corresponds to Fig. 5c)

Movie S2: Portable electronic calculator charging (corresponds to Fig. 5d)

Movie S3: Tapping on lap to harvest electrical output (corresponds to Fig. 6a)

Movie S4: Tapping on cloth to harvest electrical output (corresponds to Fig. 6a)

Movie S5: Tapping on forearm to harvest electrical output (corresponds to Fig. 6a)

Movie S6: Running. HA/PDMS-TENG on sandal to light LEDs (corresponds to Fig. 6c)

Movie S7: Running. HA/PDMS-TENG on sandal to charge capacitor (corresponds to Fig. 6c)

Movie S8: Finger bending. Rubber gloves with HA/PDMS-TENG (corresponds to Fig. 6d)

Fig. S1. FE-SEM, EDS, element mapping images of the HA/PDMS bionanocomposite films with different HA loadings.

Fig. S2. ATR-FTIR spectra of HA/PDMS with different amounts of hydroxyapatite.

Fig. S3. UV-vis light transmittance spectra of HA/PDMS films with different contents of hydroxyapatite.

Fig. S4. Digital image of 10HA/PDMS before and after stretching.

Fig. S5. (a) Schematic illustration of the power generation principle of the HA/PDMS-TENG. (b) Typical output voltage signal for one pressing and releasing cycle.

Fig. S6. The circuit diagram for driving a commercial calculator.

TM film	Voltag	Current	Power density	Size	Reference
	e [V]	[µA]	$[W/m^2]$	[cm ²]	
Graphene oxide/porous PDMS	140.4	2.57	3.73	0.35	1
ZnSnO ₃ nanocubes /(PDMS)	400	28	7.5	9	2
PDMS/ZnSnO ₃)/MWCNT	475	36	10.5	4	3
PDMS/NiTe ₂ NB	197	86.4	18.9	9	4
SrBaTiO ₃ /PDMS	280	8.5	4.41	4	5
Mustard seed	126	-	0.334	-	6
Silk	280	17.3	14.4	4	7
HA/PDMS (This work)	300	22.4	27.34	4	Our work

Table S1. HA/PDMS-TENG compared with previously reported high-dielectric constant material-based TENGs.

References

- 1. C. R. Yang, C. T. Ko, S. F. Chang and M. J. Huang, Nano Energy, 2022, 92.
- G. Wang, Y. Xi, H. X. Xuan, R. C. Liu, X. Chen and L. Cheng, Nano Energy, 2015, 18, 28-36.
- S. Feng, H. L. Zhang, D. L. He, Y. G. Xu, A. N. Zhang, Y. Liu and J. B. Bai, Energy Technol-Ger, 2019, 7.
- 4. Y. T. Qian, Z. Lyu, D. H. Kim and D. J. Kang, Nano Energy, 2021, 90.
- 5. M. V. Paranjape, S. A. Graham, P. Manchi, A. Kurakula and J. S. Yu, Small, 2023.
- S. K. Singh, P. Kumar, R. Magdum, U. Khandelwal, S. Deswal, Y. More, S. Muduli, R. Boomishankar, S. Pandit and S. Ogale, Acs Appl Bio Mater, 2019, 2, 3164-3170.
- 7. B. Dudem, S. A. Graham, R. D. I. G. Dharmasena, S. R. P. Silva and J. S. Yu, Nano Energy, 2021, 83