Supplementary Information

Kinetics and Mechanism Effects of 2D Carbon Supports in Hydrogen

Spillover Composites

Lu Han *a, Pengfei Song a, Rui Zhang b, Liuyan Zhu a, Sibo Shen a, Lijiang Wang a, Xingxing

Shen^a

^a College of Chemical Engineering, Hebei Normal University of Science and Technology,

Qinhuangdao, Hebei 066004, China. E-mail: hl3395@hevttc.edu.cn

^b College of Horticultural Science & Technology, Hebei Normal University of Science and

Technology, Qinhuangdao, Hebei 066004, China.

Fig. S1 Raman spectra of the raw C_{60} and $Co_{1-x}S/C_{60}$ composites.

Fig. S2 XPS spectrum of the raw C_{60} .

Fig. S3 XPS spectrum of the raw rGO.

Fig. S4 XPS spectrum of the $Co_{1-x}S$.

Fig. S5 XPS spectrum of the $Co_{1-x}S/C_{60}$ composites.

Fig. S6 XPS spectrum of the Co_{1-x} S/rGO composites.

Fig. S7 HRTEM images of the $Co_{1-x}S/C_{60}$ composites.

Fig. S8 EDS elemental mapping images of C in the $\text{Co}_{1-x}S/\text{C}_{60}$ composites.

Fig. S9 HRTEM images of the Co_{1-x}S/rGO composites.

Fig. S10 EDS elemental mapping images of C in the Co_{1-x}S/rGO composites.

Fig. S11 Charge-discharge curves of the $Co_{1-x}S$ and $Co_{1-x}S$ ball milled for 10 h and $Co_{1-x}S/C_{60}$ and $Co_{1-x}S/rGO$ mixtures.

Sample	Hydrogen storage	Capacity (wt %)/Ratio (%)			
	capacity (wt %)	I voltage plateaus	II voltage plateaus	III voltage plateaus	
C ₆₀	0.50				
rGO	0.31				
Co _{1-x} S	1.49	0.89/59		0.60/41	
Co _{1-x} S ball milled	1.54	0.99/64		0.55/36	
Co _{1-x} S/C ₆₀ composites	4.36	0.78/18	2.57/59	1.00/23	
Co _{1-x} S/C ₆₀ mixture	0.94	0.59/63		0.35/37	
Co _{1-x} S/rGO composites	5.02	0.50/10	2.71/54	1.81/36	
Co _{1-x} S/rGO mixture	1.00	0.63/63		0.37/37	

Tab. S1 Hydrogen storage capacity retention ratios of the different samples.

Tab. S2 Comparison of hydrogen storage capacity with other reported materials.

No	Materials	Hydrogen Storage Capacities (wt %)	Reference
1	Pd/B-rGO	0.33 wt %	[1]
2	BaMoO ₄ /ZnO-GO	0.79 wt %	[2]
3	$\mathrm{Co}_9\mathrm{S}_8+\mathrm{CoRGO}$	2.38 wt %	[3]
4	Ni-ZrO ₂ -rGO	1.54 wt %	[4]
5	C ₆₀ /Co	3.32 wt %	[5]
6	C ₆₀ /CoB	2.24 wt %	[6]
7	Pt-C ₆₀	1.6 wt %	[7]
8	Na_6C_{60}	2.1 wt %	[8]
9	Co _{1-x} S/C ₆₀ this work	4.36 wt %	
10	C _{1-x} S/rGO this work	5.02 wt %	

Sample	Hydrogen storage Capacity (wt %)	Capacity after 50 Cycles (wt %)	Capacity retention Ratio (%)
Co _{1-x} S/rGO composites	5.02	4.41	88
Co _{1-x} S/C ₆₀ composites	4.36	3.48	80
Co _{1-x} S composites	1.49	0.90	64
rGO	0.30		
C_{60}	0.50		

Tab. S3 Hydrogen storage capacities of the different samples.

Tab. S4 Comparison of CoS/C₆₀ and CoS/rGO hydrogen absorption systems.

Items	CoS/C ₆₀	CoS/rGO	
H-H bond length for CoS-H ₂	0.78 Å		
Adsorption energy for CoS-H ₂	-6.9 kcal mol ⁻¹		
H-H bond length for one H ₂ adsorption	0.79 Å	0.78 Å	
C-Co bond length for one H ₂ adsorption	1.82 Å	1.70 Å	
Adsorption energy when one H_2 is adsorbed	-29.4 kcal mol ⁻¹	-15.5 kcal mol ⁻¹	
H-H bond length when spillover occurs	0.79 Å	0.79 Å	
C-Co bond length for one H ₂ adsorption	1.70 Å	1.69 Å	
Adsorption energy when spillover occurs	-30.7 kcal mol ⁻¹	-16.2 kcal mol ⁻¹	
Specific surface area	C_{60} : 33.6 m ² g ⁻¹	rGO: 269.8 m ² g ⁻¹	

Quantum chemical computational details

All calculations in this work were performed using Gaussian 09 program package⁹. Full geometry optimizations were performed to locate all the stationary points, using the B3LYP method¹⁰ with the 6-31++G**^{11,12} basis for S, C, H, and LANL2DZ for Co, namely B3LYP/6-31++G**//LANL2DZ. Dispersion corrections were computed with Grimme's D3(BJ) method in optimization¹³. Harmonic vibrational frequency was performed at the same level to guarantee no imaginary frequency in the molecules, i.e., they locate on the minima of the potential energy surface. Convergence parameters of

the default threshold were retained (maximum force within 4.5×10^{-4} Hartrees/Bohr and root mean square (RMS) force within 3.0×10^{-4} Hartrees/Radian) to obtain the optimized structure. The optimal structure was identified, given that all calculations for structural optimization were successfully converged within the convergence threshold of no imaginary frequency during the process of vibration analysis.

Sample	HRD200	HRD400	HRD600	HRD800	HRD1000
Co _{1-x} S/rGO Composites	93.2	89.3	84.7	82.1	80.4
Co _{1-x} S/C ₆₀ Composites	88.1	82.4	77.6	73.7	70.5

Tab. S5 High rate discharge performances of the different electrodes.

Tab. S6 Electrochemical kinetic parameters of different electrodes.

Sample	$R_p \left(\mathrm{m}\Omega \right)$	$i_0 ({ m mA g}^{-1})$	$D/r_0^2 (10^{-5} \text{ cm}^2 \text{ s}^{-1})$
Co _{1-x} S/rGO Composites	363	70.69	6.92
Co _{1-x} S/C ₆₀ Composites	498	51.55	5.38

Fig. S12 Equivalent circuit of EIS of hydrogen storage electrodes.

Tab. S7 Com	ponent paramete	rs of the equ	iivalent	circuit	of EIS
-------------	-----------------	---------------	----------	---------	--------

Sample	$R_1(\Omega)$	$R_{ct}\left(\Omega ight)$	$R_{sa}\left(\Omega ight)$
Co _{1-x} S/rGO Composites	0.253	0.031	0.526
Co _{1-x} S/C ₆₀ Composites	0.294	0.052	0.740

Reference

1 E. Boateng, J. S. Dondapati, A. R. Thiruppathi and A. Chen, International Journal of Hydrogen Energy, 2020, 45, 28951-28963.

2 F. Karkeh-Abadi, M. Ghiyasiyan-Arani and M. Salavati-Niasari, Ultrasonics Sonochemistry, 2022, 90, 106167.

3 H. Liu, W. Liu, P. Chen, J. Zhao and Z. Su, International Journal of Energy Research, 2020, 44, 11742-11755.

4 M. Kaur and K. Pal, Journal of Materials Science: Materials in Electronics, 2020, 31, 10903-10911.

5 D. Bao, P. Gao, X. D. Shen, C. Chang, L. Q. Wang, Y. Wang, Y. J. Chen, X. M. Zhou, S. C. Sun, G. B. Li and P. P. Yang, Acs Applied Materials & Interfaces, 2014, 6, 2902-2909.

6 L. Sha, P. Gao, X. Li and X. Bai, Journal of Organometallic Chemistry, 2018, 863, 90-94.

7 X. L. Wang and J. P. Tu, Applied Physics Letters, 2006, 89, 064101.

8 D. A. Knight, J. A. Teprovich, Jr., A. Summers, B. Peters, P. A. Ward, R. N. Compton and R. Zidan, Nanotechnology, 2013, 24, 455601.

9 R. A. Gaussian09, Inc., Wallingford CT, 2009, 121, 150-166.

10 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, The Journal of chemical physics, 1980, 72, 650-654.

11 F. Weigend and R. Ahlrichs, PCCP, 2005, 7, 3297-3305.

12 S. Xu, T. He, J. Li, Z. Huang and C. Hu, Applied Catalysis B: Environmental, 2021, 292, 120145.

13 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, The Journal of chemical physics, 2010, 132, 154104.