Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Tailoring the coordination environment of double-atom catalyst to boost electrocatalytic nitrogen reduction: a first-principles study

Jiarui Wu¹, Donghai Wu^{1,2}, Haobo Li¹, Yanhao Song¹, Wenjing Lv¹, Xiaohu Yu^{3*},

Dongwei Ma^{1*}

¹Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

²Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured

Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

³Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis,

School of Chemical & Environment Sciences, Shaanxi University of

Technology, Hanzhong 723000, China

^{*}Corresponding author. E-mail: yuxiaohu@snut.edu.cn (X. Yu).

^{*}Corresponding author. E-mail: madw@henu.edu.cn; dwmachina@126.com; (D. Ma).

а	V ₂ N ₆ /G	Cr ₂ N ₆ /G	Mn ₂ N ₆ /G	Fe ₂ N ₆ /G
	0000000000	00000000000	0000000000	00000000000
	Co ₂ N ₆ /G	Ni ₂ N ₆ /G	Cu ₂ N ₆ /G	
	0000000000	0000000000	00000000000	
b	V ₂ BN ₅ /G ^α	Mn₂BN₅/Gα	Co ₂ BN ₅ /G ^α	Cu ₂ BN ₅ /G ^α
	00000000000	0-0-0-0-0-0-0-0-0	000000000000	000000000000
	V ₂ BN ₅ /G ^β	Mn ₂ BN ₅ /G ^β	Co ₂ BN ₅ /G ^β	Cu₂BN₅/G ^β
	0000000000000	000000000000	000000000000	00000000000
	V_2BN_5/G_2	Mn ₂ BN ₅ /G ^γ	Co ₂ BN ₅ /G ^γ	Cu ₂ BN ₅ /G ^γ
	00000000000	00000000000	000000000000	000000000000
	V ₂ ON ₅ /G ^α	Mn ₂ ON ₅ /G ^α	Co ₂ ON ₅ /G ^α	Cu ₂ ON ₅ /G ^α
	00000000000	00000000000	000000000000	000000000000
	V ₂ ON ₅ /G ^β	Mn₂ON₅/G ^β	Co ₂ ON ₅ /G ^β	Cu ₂ ON ₅ /G ^β
	000000000000	00000000000	000000000000	000000000000
	V ₂ ON ₅ /G ^γ	Mn₂ON₅/G ^γ	Co ₂ ON ₅ /G ^γ	Cu ₂ ON ₅ /G ^γ
	00000000000	00000000000	000000000000	0000000000000
	Cr ₂ BN ₅ /G ^a	Fe ₂ BN ₅ /G ^a	Ni ₂ BN ₅ /G ^α	
	00000000000	0-	0-0-0-00-00-0-0-0	
	Cr ₂ BN ₅ /G ^p	Fe ₂ BN ₅ /G ^p	NI ₂ BN ₅ /G ^p	
	000000000000000000000000000000000000000	000000000000	000000000000	
	Cr ₂ BN ₅ /G ^v	Fe ₂ BN ₅ /G ^y	NI ₂ BN ₅ /G ^y	
	0.0000000000	0-0-0-0-0-0-0-0-0	0-0-0-02-02-0-0-0	
	Cr ₂ ON ₅ /G ^u	Fe ₂ ON ₅ /G ^u	NI ₂ ON ₅ /G ^u	
	Ur ₂ UN ₅ /G ^P	re ₂ UN ₅ /G ^P	NI ₂ UN ₅ /G ^P	
	Cr ₂ ON ₅ /G ⁷			

Fig. S1. Optimized configurations of the studied M_2N_6/G (a) and $M_2B(O)N_5/G$ (b) DACs. The larger colorized balls denote TM atoms, and the small silver, blue, red, green balls represent C, N, O, and B atoms, respectively.

Fig. S2. The calculated total density of states (TDOS) of the studied M_2N_6/G (a) and $M_2B(O)N_5/G$ (b) DACs. The red and blue lines denote the spin-up and spin-down states, respectively. The vertical dashed lines represent Fermi level (E_F), which are set to 0 eV.

Fig. S3. Optimized configurations of the most favorable models for $*N_2$ adsorption on the studied M_2N_6/G (a) and $M_2B(O)N_5/G$ (b) DACs. The larger colorized balls denote TM atoms, and the small silver, blue, red, green balls represent C, N, O, and B atoms, respectively.

Fig. S4. Projected density of states (PDOS) and *d*-band center (ε_d) of the 3*d* orbitals of Cu atoms for Cu₂N₆/G (a) and Cu₂ON₅/G^{α} (b). In (b), Cu₁ denotes the Cu atom co-coordinated with O and N atoms, and Cu₂ is another Cu atom. The positive and negative PDOS denote the spin-up and spin-down states, respectively. PDOS for the molecular orbitals of *N₂ and the 3*d* orbitals of its bonded Cu atom (top panels) and the corresponding COHP (lower panels) for *N₂ adsorbed Cu₂N₆/G (c) and Cu₂ON₅/G^{α} (d). Insets in the lower panels are the charge density difference (CDD) plots, where the yellow and cyan regions denote electron accumulation and depletion, respectively, with an isosurface of 0.002 *e*/bohr³. The vertical green and grey lines represent ε_d and E_F, respectively.

Fig. S5. PDOS and ε_d of 3*d* orbitals of the Mn atoms for Mn₂N₆/G (a) and Mn₂ON₅/G^{α} (b). In (b), Mn₁ denotes the Mn atom co-coordinated with O and N atoms, and Mn₂ is another Mn atom. The positive and negative PDOS denote the spin-up and spin-down states, respectively. The vertical green and grey lines represent ε_d and E_F, respectively.

Fig. S6. Optimized configurations of the M₂B₆/G and M₂O₆/G DACs. The larger colorized balls denote TM atoms, and the small silver, red, and green balls represent C, O, and B atoms, respectively.

Fig. S7. Optimized intermediate configurations and corresponding free energy change (ΔG) for the first hydrogenation step (*N₂ + H⁺ + $e^- \rightarrow *N_2H$) and last hydrogenation step (*NH₂ + H⁺ + $e^- \rightarrow *NH_3$) during the NRR process on the M₂B₆/G DACs. The larger colorized balls denote TM atoms, and the small silver, blue, green, and pink balls represent C, N, B, and H atoms, respectively.

Fig. S8. Optimized intermediate configurations and corresponding free energy change (ΔG) for the first hydrogenation step (*N₂ + H⁺ + $e^- \rightarrow *N_2H$) and last hydrogenation step (*NH₂ + H⁺ + $e^- \rightarrow *NH_3$) during the NRR process on the M₂O₆/G DACs. The larger colorized balls denote TM atoms, and the small silver, blue, red, and pink balls represent C, N, O, and H atoms, respectively.

	Mn₂N₀/G	Mn ₂ ON ₅ /G	Mn ₂ O ₂ N ₄ /G	Mn ₂ O ₃ N ₃ /G	Mn ₂ O ₄ N ₂ /G	Mn ₂ O ₅ N/G	Mn ₂ O ₆ /G
а							
b							
С							
d							
е							
f							
g							
h							
i							
j							

Fig. S9. Optimized configurations of the $Mn_2O_xN_{6-x}/G$ (x=0-6) DACs. The larger colorized balls denote TM atoms, and the small silver, blue, and red balls represent C, N, and O atoms, respectively.

Fig. S10. Optimized intermediate configurations and corresponding free energy change (ΔG) for the first hydrogenation step (*N₂ + H⁺ + $e^- \rightarrow *N_2H$) and last hydrogenation step (*NH₂ + H⁺ + $e^- \rightarrow *NH_3$) during the NRR process on the Mn₂O₂N₄/G DACs. The larger colorized balls denote TM atoms, and the small silver, blue, red, and pink balls represent C, N, O, and H atoms, respectively.

Fig. S11. Optimized intermediate configurations and corresponding free energy change (ΔG) for the first hydrogenation step (*N₂ + H⁺ + $e^- \rightarrow *N_2H$) and last hydrogenation step (*NH₂ + H⁺ + $e^- \rightarrow *NH_3$) during the NRR process on the Mn₂O₃N₃/G DACs. The larger colorized balls denote TM atoms, and the small silver, blue, red, and pink balls represent C, N, O, and H atoms, respectively.

Fig. S12. Optimized intermediate configurations and corresponding free energy change (ΔG) for the first hydrogenation step ($*N_2 + H^+ + e^- \rightarrow *N_2H$) and last hydrogenation step ($*NH_2 + H^+ + e^- \rightarrow *NH_3$) during the NRR process on the Mn₂O₄N₂/G and Mn₂O₅N/G DACs. The larger colorized balls denote TM atoms, and the small silver, blue, red, and pink balls represent C, N, O, and H atoms, respectively.

• · · · ·		• •
Species	E_{ZPE}	TS
*N-*N	0.17	0.14
*N-*NH	0.47	0.08
*NH-*NH	0.79	0.11
*NH*NH ₂	1.13	0.14
*NH ₂ *NH ₂	1.50	0.15
*NH ₂ *NH ₃	1.68	0.25
* NH ₂	0.66	0.09
*N-N	0.22	0.16
*N-NH	0.47	0.10
*N-NH ₂	0.85	0.13
*N-NH ₃	1.03	0.12
*N	0.10	0.03
*NH	0.37	0.05

Table S1. The calculated zero-point energy (E_{ZPE} in eV) and the product (*TS* in eV) of the temperature (298.15 K) and entropy for the various intermediates during the NRR process.

Species	E_{ZPE}	TS
H_2	0.27	0.41
N_2	0.15	0.58
NH ₃	0.89	0.60

Table S2. The zero-point energy (E_{ZPE} in eV) and the product (*TS* in eV) of the temperature (298.15 K) and entropy for the free H₂, N₂, and NH₃ molecules.

Table S3. Key parameters of the studied M₂N₆/G and M₂BN₅/G DACs, including the bond length between two TM atoms (d_{M1-M2} , in Å); spin magnetic moment of the TM atom bonded with B atom (M_1 , in μ_B) and another TM atom (M_2 , in μ_B); the net charge of the TM atom bonded with B atom (Q_1 , in e) and another TM atom (Q_2 , in e), where the positive value means the electrons transfer from the metals to the supports; and the *d*-band center of the TM atom bonded with the B atom (ε_{d1} , in eV) and another TM atom (ε_{d2} , in eV).

Systems	$d_{ m M1-M2}$	M_1	M_2	Q_1	Q_2	E _{d1}	Ed2
V2N6/G	2.42	3.04	3.04	1.06	1.06	0.43	0.43
$V_2BN_5\!/G^\alpha$	2.64	2.48	2.22	1.05	1.17	0.33	0.24
$V_2BN_5\!/G^\beta$	2.44	2.47	2.93	0.93	1.10	0.55	0.48
$V_2BN_5\!/G^\gamma$	2.69	2.33	2.94	0.89	1.14	0.38	0.53
Cr ₂ N ₆ /G	2.57	4.17	4.17	1.00	1.00	0.33	0.33
Cr_2BN_5/G^{α}	2.72	3.72	3.67	0.98	1.10	0.24	0.35
Cr_2BN_5/G^{β}	2.55	3.66	3.90	0.76	1.10	0.66	0.04
Cr_2BN_5/G^{γ}	2.83	3.52	3.80	0.79	1.15	0.39	-0.09
Mn ₂ N ₆ /G	2.44	3.41	3.59	0.96	0.98	-0.68	-0.66
Mn_2BN_5/G^{α}	2.62	4.25	3.32	0.92	1.05	-0.55	-0.77
Mn_2BN_5/G^{β}	2.45	3.61	4.14	0.74	1.04	-0.57	-0.74
Mn_2BN_5/G^{γ}	2.62	3.67	3.68	0.69	1.03	-0.30	-0.69
Fe ₂ N ₆ /G	2.22	2.34	2.34	0.83	0.83	-0.89	-0.89
Fe_2BN_5/G^{α}	2.42	3.28	2.24	0.79	0.86	-1.35	-1.07
Fe_2BN_5/G^{β}	2.25	2.57	2.99	0.60	0.88	-1.03	-1.08
Fe_2BN_5/G^{γ}	2.18	1.79	1.78	0.57	0.81	-0.67	-0.71
C02N6/G	2.25	1.24	1.24	0.69	0.69	-1.14	-1.14
Co_2BN_5/G^{α}	2.27	1.83	1.18	0.53	0.71	-1.05	-1.02
Co_2BN_5/G^{β}	2.30	1.03	0.52	0.43	0.71	-1.02	-1.10
$Co_2BN_5\!/G^{\gamma}$	2.20	1.42	1.51	0.44	0.68	-1.03	-1.07
Ni ₂ N ₆ /G	2.37	0.00	0.00	0.60	0.60	-1.01	-1.01
Ni_2BN_5/G^{α}	2.45	0.61	0.36	0.46	0.67	-1.08	-1.45
Ni_2BN_5/G^{β}	2.41	0.14	0.84	0.33	0.64	-1.11	-1.12
Ni_2BN_5/G^{γ}	2.41	0.30	0.62	0.32	0.63	-1.18	-1.32
Cu ₂ N ₆ /G	2.40	0.25	0.25	0.70	0.70	-2.67	-2.67
Cu_2BN_5/G^{α}	2.43	0.04	0.09	0.45	0.77	-2.68	-3.23
Cu_2BN_5/G^{β}	2.37	0.00	0.00	0.52	0.64	-3.53	-2.42
$Cu_2BN_5\!/G_\gamma$	2.43	0.00	0.00	0.44	0.71	-3.22	-2.98

Table S4. Key parameters of the studied M₂N₆/G and M₂ON₅/G DACs, including the bond length between two TM atoms (d_{M1-M2} , in Å); spin magnetic moment of the TM atom bonded with O atom (M_1 , in μ_B) and another TM atom (M_2 , in μ_B); the net charge of the TM atom bonded with O atom (Q_1 , in e) and another TM atom (Q_2 , in e), where the positive value means the electrons transfer from the metals to the supports; and the *d*-band center of the TM atom bonded with the O atom (ε_{d1} , in eV) and another TM atom (ε_{d2} , in eV).

Systems	$d_{ m M1-M2}$	M_1	M_2	Q_1	Q_2	E _{d1}	Ed2
V2N6/G	2.42	3.04	3.04	1.06	1.06	0.43	0.43
V_2ON_5/G^{lpha}	2.49	3.23	3.19	1.02	0.99	0.41	0.51
V_2ON_5/G^{β}	2.39	3.29	3.02	1.02	1.08	0.25	0.25
V_2ON_5/G^γ	2.42	3.26	3.10	1.00	1.05	0.34	0.31
Cr ₂ N ₆ /G	2.57	4.17	4.17	1.00	1.00	0.33	0.33
Cr_2ON_5/G^{α}	2.59	4.23	4.28	0.98	0.94	0.11	0.29
Cr_2ON_5/G^{β}	2.55	4.41	4.11	0.95	1.03	0.28	0.25
Cr_2ON_5/G^{γ}	2.56	4.33	4.17	0.96	0.99	0.12	0.16
Mn ₂ N ₆ /G	2.44	3.41	3.59	0.96	0.98	-0.68	-0.66
Mn_2ON_5/G^{α}	2.41	3.27	3.51	0.89	0.91	-0.47	-0.50
Mn_2ON_5/G^{β}	2.35	3.63	3.16	0.88	0.96	-0.43	-0.48
Mn_2ON_5/G^{γ}	2.38	3.57	3.25	0.91	0.93	-0.63	-0.62
Fe ₂ N ₆ /G	2.22	2.34	2.34	0.83	0.83	-0.89	-0.89
Fe_2ON_5/G^{α}	2.18	2.08	2.23	0.74	0.74	-0.78	-0.72
Fe_2ON_5/G^{β}	2.10	2.40	2.03	0.73	0.78	-0.80	-0.76
Fe_2ON_5/G^{γ}	2.10	2.17	1.96	0.70	0.74	-0.66	-0.60
C02N6/G	2.25	1.24	1.24	0.69	0.69	-1.14	-1.14
Co_2ON_5/G^{α}	2.31	1.01	1.25	0.66	0.63	-1.14	-1.05
Co_2ON_5/G^{β}	2.18	1.49	0.93	0.68	0.69	-1.26	-1.18
Co_2ON_5/G^{γ}	2.21	1.25	0.98	0.63	0.66	-1.17	-1.13
Ni ₂ N ₆ /G	2.37	0.00	0.00	0.60	0.60	-1.01	-1.01
Ni_2ON_5/G^{α}	2.39	0.00	0.00	0.60	0.56	-1.34	-1.17
Ni_2ON_5/G^{β}	2.32	0.00	0.00	0.55	0.64	-1.10	-1.36
Ni_2ON_5/G^{γ}	2.33	0.00	0.00	0.57	0.60	-1.27	-1.35
Cu ₂ N ₆ /G	2.40	0.25	0.25	0.70	0.70	-2.67	-2.67
Cu_2ON_5/G^{α}	2.42	0.17	0.07	0.66	0.64	-2.22	-2.36
Cu_2ON_5/G^{β}	2.34	-0.12	-0.18	0.65	0.69	-2.36	-2.46
Cu_2ON_5/G^{γ}	2.35	-0.11	-0.11	0.64	0.65	-2.26	-2.34

Systems	$\Delta G(*N_2)$	$d_{ m N-N}$	Q	patterns
V2N6/G	-1.52	1.27	-0.95	side-on
V_2BN_5/G^{lpha}	-1.42	1.24	-0.90	side-on
$V_2 B N_5 / G^{\beta}$	-1.21	1.24	-0.87	side-on
$V_2 B N_5 / G^{\gamma}$	-1.66	1.25	-0.97	side-on
Cr ₂ N ₆ /G	-0.35	1.20	-0.71	side-on
Cr_2BN_5/G^{α}	-0.40	1.14	-0.39	end-on
Cr_2BN_5/G^{β}	-0.22	1.13	-0.26	end-on
Cr_2BN_5/G^{γ}	-0.91	1.21	-0.81	side-on
Mn ₂ N ₆ /G	-0.47	1.16	-0.51	end-on
Mn_2BN_5/G^{α}	-0.27	1.14	-0.31	end-on
Mn_2BN_5/G^β	-0.53	1.15	-0.47	end-on
Mn_2BN_5/G^{γ}	-0.89	1.20	-0.74	side-on
Fe ₂ N ₆ /G	-0.18	1.14	-0.30	end-on
Fe_2BN_5/G^{α}	-0.42	1.14	-0.36	end-on
Fe_2BN_5/G^{β}	-0.52	1.14	-0.34	end-on
Fe_2BN_5/G^{γ}	-0.92	1.14	-0.34	end-on
C02N6/G	-0.17	1.16	-0.39	end-on
Co_2BN_5/G^{α}	-0.49	1.14	-0.31	end-on
Co_2BN_5/G^{β}	-0.14	1.15	-0.36	end-on
Co_2BN_5/G^{γ}	-0.80	1.14	-0.32	end-on
Ni ₂ N ₆ /G	0.40	1.13	-0.18	end-on
Ni_2BN_5/G^{α}	-0.14	1.13	-0.26	end-on
Ni_2BN_5/G^{β}	0.19	1.13	-0.20	end-on
Ni_2BN_5/G^{γ}	-0.40	1.13	-0.22	end-on
Cu ₂ N ₆ /G	0.41	1.13	-0.14	end-on
Cu_2BN_5/G^{α}	0.25	1.12	-0.02	physisorption
Cu_2BN_5/G^β	0.25	1.12	-0.02	physisorption
Cu_2BN_5/G^{γ}	0.26	1.12	-0.02	physisorption

Table S5. The calculated adsorption free energy ($\Delta G(*N_2)$, in eV), N-N bond length ($d_{\text{N-N}}$, in Å), charge transfer (Q, in e, the negative values denote the electron transfer from the DACs to $*N_2$), and corresponding adsorption patterns of $*N_2$ on M_2N_6/G and M_2BN_5/G DACs.

$\Delta G(*N_2)$	$d_{ m N-N}$	Q	patterns
-1.52	1.27	-0.95	side-on
-1.90	1.28	-1.04	side-on
-1.93	1.28	-0.98	side-on
-1.82	1.28	-1.00	side-on
-0.35	1.20	-0.71	side-on
-0.70	1.25	-0.99	side-on
-0.27	1.20	-0.72	side-on
-0.48	1.20	-0.76	side-on
-0.47	1.16	-0.51	end-on
-0.64	1.20	-0.76	side-on
-0.32	1.20	-0.75	side-on
-0.79	1.21	-0.82	side-on
-0.18	1.14	-0.30	end-on
-0.25	1.15	-0.37	end-on
-0.07	1.14	-0.29	end-on
0.01	1.16	-0.47	end-on
-0.17	1.16	-0.39	end-on
-0.47	1.16	-0.42	end-on
0.02	1.16	-0.40	end-on
-0.29	1.16	-0.41	end-on
0.40	1.13	-0.18	end-on
0.51	1.14	-0.32	end-on
0.26	1.12	-0.04	physisorption
0.15	1.14	-0.27	end-on
0.41	1.13	-0.14	end-on
-0.24	1.13	-0.21	end-on
0.27	1.12	-0.02	physisorption
-0.11	1.13	-0.18	end-on
	$\begin{tabular}{ c c c c } \hline \Delta G(*N_2) \\ \hline -1.52 \\ -1.90 \\ -1.93 \\ -1.82 \\ -0.35 \\ -0.70 \\ -0.27 \\ -0.48 \\ -0.27 \\ -0.64 \\ -0.32 \\ -0.79 \\ -0.64 \\ -0.32 \\ -0.79 \\ -0.18 \\ -0.25 \\ -0.07 \\ 0.01 \\ -0.17 \\ -0.47 \\ 0.02 \\ -0.29 \\ 0.40 \\ 0.51 \\ 0.26 \\ 0.15 \\ 0.41 \\ -0.24 \\ 0.27 \\ -0.11 \end{tabular}$	$\Delta G(*N_2)$ d_{N-N} -1.521.27-1.901.28-1.931.28-1.821.28-0.351.20-0.701.25-0.271.20-0.481.20-0.471.16-0.641.20-0.791.21-0.181.14-0.251.15-0.071.140.011.16-0.471.160.021.160.021.160.021.160.151.140.261.120.151.140.271.12-0.111.13	$\Delta G(*N_2)$ d_{N-N} Q -1.521.27-0.95-1.901.28-1.04-1.931.28-0.98-1.821.28-1.00-0.351.20-0.71-0.701.25-0.99-0.271.20-0.72-0.481.20-0.76-0.471.16-0.51-0.641.20-0.76-0.321.20-0.75-0.791.21-0.82-0.181.14-0.30-0.251.15-0.37-0.071.16-0.47-0.171.16-0.420.021.16-0.410.471.13-0.180.511.14-0.320.261.12-0.040.151.14-0.270.411.13-0.14-0.241.13-0.14-0.271.12-0.02-0.111.13-0.18

Table S6. The calculated adsorption free energy ($\Delta G(*N_2)$, in eV), N-N bond length ($d_{\text{N-N}}$, in Å), charge transfer (Q, in e, the negative values denote the electron transfer from the DACs to $*N_2$), and corresponding adsorption patterns of $*N_2$ on M_2N_6/G and M_2ON_5/G DACs.

Table S7. The calculated limiting potential (U_L , in V), potential-determining step (PDS), and reaction free energy of the first hydrogenation step ($*N_2 + H^+ + e^- \rightarrow *N_2H$) (ΔG_1 , in eV) and last hydrogenation step ($*NH_2 + H^+ + e^- \rightarrow *NH_3$) (ΔG_6 , in eV) for NRR on M₂N₆/G and M₂BN₅/G DACs.

Systems	$U_{ m L}$	PDS	ΔG_1	ΔG_6
V ₂ N ₆ /G	-1.01	$^{*}\mathrm{NH}_{2}\mathrm{\rightarrow}^{*}\mathrm{NH}_{3}$	-0.04	1.01
V_2BN_5/G^{lpha}	-0.85	$*NH_2 \rightarrow *NH_3$	0.29	0.85
$V_2 B N_5 / G^{\beta}$	-0.96	$^{*}NH_{2} \rightarrow ^{*}NH_{3}$	0.13	0.96
$V_2 B N_5 / G^{\gamma}$	-1.02	$*NH_2 \rightarrow *NH_3$	0.23	1.02
Cr ₂ N ₆ /G	-0.84	$*NH_2 \rightarrow *NH_3$	0.26	0.84
Cr_2BN_5/G^{α}	-0.69	$*NH_2 \rightarrow *NH_3$	0.60	0.69
Cr_2BN_5/G^{β}	-0.70	$N_2 \rightarrow N_2 H$	0.70	0.66
Cr_2BN_5/G^γ	-0.78	$*NH_2 \rightarrow *NH_3$	0.11	0.78
Mn ₂ N ₆ /G	-0.48	$^{*}NH_{2} \rightarrow ^{*}NH_{3}$	0.47	0.48
Mn_2BN_5/G^{α}	-0.76	$N_2 \rightarrow N_2 H$	0.76	0.18
Mn_2BN_5/G^β	-0.61	$N_2 \rightarrow N_2 H$	0.61	0.57
Mn_2BN_5/G^{γ}	-0.80	$*NH_2 \rightarrow *NH_3$	0.62	0.80
Fe ₂ N ₆ /G	-0.62	$N_2 \rightarrow N_2 H$	0.62	0.02
Fe_2BN_5/G^{α}	-0.76	$N_2 \rightarrow N_2 H$	0.76	0.08
Fe_2BN_5/G^{β}	-0.59	$N_2 \rightarrow N_2 H$	0.59	0.33
Fe_2BN_5/G^{γ}	-0.63	$N_2 \rightarrow N_2 H$	0.63	0.63
Co ₂ N ₆ /G	-0.48	$N_2 \rightarrow N_2 H$	0.48	0.43
Co_2BN_5/G^{α}	-0.51	$*NH_2 \rightarrow *NH_3$	0.50	0.51
Co_2BN_5/G^{β}	-0.52	$N_2 \rightarrow N_2 H$	0.52	0.28
Co_2BN_5/G^γ	-0.71	$*NH_2 \rightarrow *NH_3$	0.44	0.71
Ni ₂ N ₆ /G	-1.36	$^{\ast}N_{2} \rightarrow ^{\ast}N_{2}H$	1.36	-0.62
Ni_2BN_5/G^{α}	-1.26	$N_2 \rightarrow N_2 H$	1.26	-0.02
Ni_2BN_5/G^{β}	-1.07	$N_2 \rightarrow N_2 H$	1.07	-0.01
Ni_2BN_5/G^{γ}	-1.03	$N_2 \rightarrow N_2 H$	1.03	0.23
Cu ₂ N ₆ /G	-1.86	$^{\ast}N_{2} {\rightarrow} ^{\ast}N_{2}H$	1.86	-0.91
Cu_2BN_5/G^{lpha}	-1.62	$N_2 \rightarrow N_2 H$	1.62	-0.56
Cu_2BN_5/G^{β}	-2.02	$N_2 \rightarrow N_2 H$	2.02	-0.59
$Cu_2BN_5\!/G^{\gamma}$	-1.65	$N_2 \rightarrow N_2 H$	1.65	-0.21

Table S8. The calculated limiting potential (U_L , in V), potential-determining step (PDS), and reaction free energy of the first hydrogenation step ($*N_2 + H^+ + e^- \rightarrow *N_2H$) (ΔG_1 , in eV) and last hydrogenation step ($*NH_2 + H^+ + e^- \rightarrow *NH_3$) (ΔG_6 , in eV) for NRR on M₂N₆/G and M₂ON₅/G DACs.

Systems	$U_{ m L}$	PDS	ΔG_1	ΔG_6
V ₂ N ₆ /G	-1.01	$^{*}NH_{2} \rightarrow ^{*}NH_{3}$	-0.04	1.01
V_2ON_5/G^{lpha}	-1.24	$*NH_2 \rightarrow *NH_3$	0.44	1.24
V_2ON_5/G^{β}	-1.31	$*NH_2 \rightarrow *NH_3$	0.27	1.31
V_2ON_5/G^{γ}	-1.10	$*NH_2 \rightarrow *NH_3$	0.24	1.10
Cr ₂ N ₆ /G	-0.84	$^{*}NH_{2} \rightarrow ^{*}NH_{3}$	0.26	0.84
Cr_2ON_5/G^{α}	-1.25	$*NH_2 \rightarrow *NH_3$	0.22	1.25
Cr_2ON_5/G^{β}	-1.00	$*NH_2 \rightarrow *NH_3$	0.34	1.00
Cr_2ON_5/G^{γ}	-0.96	$*NH_2 \rightarrow *NH_3$	0.09	0.96
Mn ₂ N ₆ /G	-0.48	$^{*}NH_{2} \rightarrow ^{*}NH_{3}$	0.47	0.48
Mn_2ON_5/G^{lpha}	-0.27	$N_2 \rightarrow N_2 H$	0.27	0.26
Mn_2ON_5/G^{β}	-0.62	$N_2 \rightarrow N_2 H$	0.62	0.30
Mn_2ON_5/G^{γ}	-0.59	$*NH_2 \rightarrow *NH_3$	0.50	0.59
Fe ₂ N ₆ /G	-0.62	$^{\ast}N_{2} \rightarrow ^{\ast}N_{2}H$	0.62	0.02
Fe_2ON_5/G^{α}	-0.46	$N_2 \rightarrow N_2 H$	0.46	0.39
Fe_2ON_5/G^{β}	-0.76	$N_2 \rightarrow N_2 H$	0.76	0.10
Fe_2ON_5/G^{γ}	-0.52	$N_2 \rightarrow N_2 H$	0.52	0.21
Co ₂ N ₆ /G	-0.48	$N_2 \rightarrow N_2 H$	0.48	0.43
Co_2ON_5/G^{α}	-0.69	$*NH_2 \rightarrow *NH_3$	0.58	0.69
Co_2ON_5/G^{β}	-0.61	$N_2 \rightarrow N_2 H$	0.61	0.20
Co_2ON_5/G^{γ}	-0.66	$N_2 \rightarrow N_2 H$	0.66	0.37
Ni ₂ N ₆ /G	-1.36	$N_2 \rightarrow N_2 H$	1.36	-0.62
Ni_2ON_5/G^{α}	-1.15	$N_2 \rightarrow N_2 H$	1.15	0.09
Ni_2ON_5/G^{β}	-1.85	$N_2 \rightarrow N_2 H$	1.85	-0.46
Ni_2ON_5/G^{γ}	-1.65	$N_2 \rightarrow N_2 H$	1.65	-0.33
Cu ₂ N ₆ /G	-1.86	$^{\ast}N_{2} \rightarrow ^{\ast}N_{2}H$	1.86	-0.91
Cu_2ON_5/G^{α}	-1.67	$N_2 \rightarrow N_2 H$	1.67	-0.25
Cu_2ON_5/G^{β}	-1.86	$N_2 \rightarrow N_2 H$	1.86	-0.65
Cu_2ON_5/G^{γ}	-1.80	$N_2 \rightarrow N_2 H$	1.80	-0.05

Metal	M_2N_6/G	M_2B_6/G	M_2O_6/G
V	4.34	12.64	6.89
Cr	4.07	13.22	5.87
Mn	3.65	12.04	5.01
Fe	4.03	12.36	6.39
Со	3.85	11.30	6.68
Ni	3.06	11.25	5.56
Cu	3.78	11.65	5.76

Table S9. The calculated formation energy (E_f , in eV) of M₂N₆/G, M₂B₆/G, and M₂O₆/G DACs.

Table S10. The calculated limiting potential (U_L , in V), potential-determining step (PDS), and reaction free energy of the first hydrogenation step ($*N_2 + H^+ + e^- \rightarrow *N_2H$) (ΔG_1 , in eV) and last hydrogenation step ($*NH_2 + H^+ + e^- \rightarrow *NH_3$) (ΔG_6 , in eV) for NRR on M₂N₆/G, M₂B₆/G, and M₂O₆/G DACs.

Systems	$U_{ m L}$	PDS	ΔG_1	ΔG_6
V ₂ N ₆ /G	-1.01	$*NH_2 \rightarrow *NH_3$	-0.04	1.01
V_2B_6/G	-0.92	$N_2 \rightarrow N_2 H$	0.92	-0.08
V_2O_6/G	-0.75	$*NH_2 \rightarrow *NH_3$	-0.09	0.75
Cr ₂ N ₆ /G	-0.84	$*NH_2 \rightarrow *NH_3$	0.26	0.84
Cr_2B_6/G	-0.43	$N_2 \rightarrow N_2 H$	0.43	-0.01
Cr ₂ O ₆ /G	-1.51	$*NH_2 \rightarrow *NH_3$	0.00	1.51
Mn ₂ N ₆ /G	-0.48	$*NH_2 \rightarrow *NH_3$	0.47	0.48
Mn_2B_6/G	-0.60	$N_2 \rightarrow N_2 H$	0.60	-0.21
Mn ₂ O ₆ /G	-1.06	$*NH_2 \rightarrow *NH_3$	0.69	1.06
Fe ₂ N ₆ /G	-0.62	$N_2 \rightarrow N_2 H$	0.62	0.02
Fe_2B_6/G	-1.04	$N_2 \rightarrow N_2 H$	1.04	-0.52
Fe ₂ O ₆ /G	-0.93	$*NH_2 \rightarrow *NH_3$	0.80	0.93
Co ₂ N ₆ /G	-0.48	$N_2 \rightarrow N_2 H$	0.48	0.43
Co_2B_6/G	-1.10	$N_2 \rightarrow N_2 H$	1.10	-0.71
Co ₂ O ₆ /G	-0.85	$N_2 \rightarrow N_2 H$	0.85	0.82
Ni ₂ N ₆ /G	-1.36	$N_2 \rightarrow N_2 H$	1.36	-0.62
Ni ₂ B ₆ /G	-1.42	$N_2 \rightarrow N_2 H$	1.42	-0.29
Ni ₂ O ₆ /G	-0.79	$N_2 \rightarrow N_2 H$	0.79	-0.14
Cu ₂ N ₆ /G	-1.86	$N_2 \rightarrow N_2 H$	1.86	-0.91
Cu ₂ B ₆ /G	-1.26	$N_2 \rightarrow N_2 H$	1.26	-0.68
Cu ₂ O ₆ /G	-2.09	*NH ₂ →*NH ₃	1.01	2.09

No.	Mn ₂ N ₆ /G	Mn ₂ ON ₅ /G	$Mn_2O_2N_4/G$	Mn ₂ O ₃ N ₃ /G	$Mn_2O_4N_2/G$	Mn ₂ O ₅ N/G	Mn ₂ O ₆ /G
а	3.65	3.86	4.30	3.51	4.68	3.61	5.01
b	/	3.33	4.45	4.56	4.43	4.38	/
c	/	3.90	5.05	3.89	4.86	3.96	/
d	/	/	4.25	4.26	5.00	/	/
e	/	/	4.65	4.64	4.30	/	/
f	/	/	4.12	3.82	4.66	/	/
g	/	/	4.31	4.62	4.80	/	/
h	/	/	3.95	4.12	5.30	/	/
i	/	/	4.20	3.94	4.36	/	/
j	/	/	/	3.52	/	/	/

Table S11. The calculated $E_{\rm f}$ (eV) of Mn₂O_xN_{6-x}/G (x=0-6) DACs.

Systems	$U_{\rm L}$	PDS	ΔG_1	ΔG_6
Mn ₂ N ₆ /G	-0.48	$*NH_2 \rightarrow *NH_3$	0.47	0.48
Mn ₂ ON ₅ /G ^a	-0.27	$N_2 \rightarrow N_2 H$	0.27	0.26
Mn ₂ ON ₅ /G ^β	-0.62	$N_2 \rightarrow N_2 H$	0.62	0.30
Mn_2ON_5/G^{γ}	-0.59	$*NH_2 \rightarrow *NH_3$	0.50	0.59
$Mn_2O_2N_4/G^a$	-0.83	*NH ₂ →*NH ₃	0.36	0.83
$Mn_2O_2N_4/G^b$	-0.85	$*NH_2 \rightarrow *NH_3$	0.39	0.85
$Mn_2O_2N_4/G^c$	-1.18	$*NH_2 \rightarrow *NH_3$	0.57	1.18
$Mn_2O_2N_4/G^d$	-0.99	*NH ₂ →*NH ₃	0.25	0.99
$Mn_2O_2N_4/G^e$	-1.21	*N ₂ →*N ₂ H	1.21	1.12
$Mn_2O_2N_4\!/G^{\rm f}$	-0.53	*NH ₂ →*NH ₃	0.51	0.53
$Mn_2O_2N_4/G^g$	-0.87	*N ₂ →*N ₂ H	0.87	0.71
$Mn_2O_2N_4/G^h$	-0.84	$*NH_2 \rightarrow *NH_3$	0.39	0.84
$Mn_2O_2N_4/G^i$	-1.11	$*NH_2 \rightarrow *NH_3$	0.17	1.11
$Mn_2O_3N_3/G^b$	-1.34	$*NH_2 \rightarrow *NH_3$	0.70	1.34
$Mn_2O_3N_3/G^c$	-1.17	$*NH_2 \rightarrow *NH_3$	0.60	1.17
$Mn_2O_3N_3/G^d$	-1.50	$*NH_2 \rightarrow *NH_3$	0.59	1.50
$Mn_2O_3N_3/G^e$	-1.29	$*NH_2 \rightarrow *NH_3$	0.77	1.29
$Mn_2O_3N_3\!/G^{\rm f}$	-1.15	$*NH_2 \rightarrow *NH_3$	0.78	1.15
$Mn_2O_3N_3/G^g$	-1.58	$*NH_2 \rightarrow *NH_3$	0.79	1.58
$Mn_2O_3N_3/G^h$	-0.56	$*NH_2 \rightarrow *NH_3$	0.35	0.56
$Mn_2O_3N_3/G^i$	-1.02	$*NH_2 \rightarrow *NH_3$	0.55	1.02
$Mn_2O_3N_3/G^j$	-0.29	*N ₂ →*N ₂ H	0.29	0.12
$Mn_2O_4N_2/G^b$	-1.30	$*NH_2 \rightarrow *NH_3$	0.69	1.30
$Mn_2O_4N_2/G^c$	-1.39	$*NH_2 \rightarrow *NH_3$	0.55	1.39
$Mn_2O_4N_2/G^d$	-1.51	$*NH_2 \rightarrow *NH_3$	0.66	1.51
$Mn_2O_4N_2/G^e$	-0.92	$*NH_2 \rightarrow *NH_3$	0.78	0.92
$Mn_2O_4N_2\!/G^{\rm f}$	-1.18	$*NH_2 \rightarrow *NH_3$	0.63	1.18
$Mn_2O_4N_2/G^g$	-1.31	$*NH_2 \rightarrow *NH_3$	0.74	1.31
$Mn_2O_4N_2/G^h \\$	-1.44	*NH ₂ →*NH ₃	0.91	1.44
$Mn_2O_4N_2\!/G^i$	-1.48	$*NH_2 \rightarrow *NH_3$	0.60	1.48
Mn_2O_5N/G^c	-1.06	*NH ₂ →*NH ₃	0.73	1.06
Mn ₂ O ₆ /G	-1.06	*NH ₂ →*NH ₃	0.69	1.06

Table S12. The calculated U_L (V), PDS, and reaction free energy of ΔG_1 and ΔG_6 (eV) for NRR on Mn₂O_xN_{6-x}/G (x=0-6) DACs.