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Figure S1. Mie calculations for the scattering cross section of a nanoparticle of 50 nm diameter
and a refractive index nnp=1.7 (blue solid line) and nnp=2.0 (red dashed line) immersed in a

homogeneous medium with refractive index nex. Calculation are shown for A=620 nm.
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Figure S2. Ellipsometry fittings for three different incident angles: (a-b) 6;, = 55°, (c-d) 6;, =
65° and (e-f) 0;, = 75°. Measurements correspond to a GAVO,: Eu3* reference sample deposited
over a thick gold layer. Theoretical fitting was obtained using nef=1.4, confirming the results

obtained by fitting ballistic transmittance and specular reflectance spectra.

PL decay spectra can be fitted in the Inokuti-Hirayama model using the following function:
I(t) = Io - exp(—Tine - t = Xs(Tine - £)°7) (S1)

[ine being the intrinsic decay rate of the cations (the rate if energy transfer between the cations did
not occur) and X the energy transfer parameter, which depends on cation concentration N and

the critical radius Ry in the following manner:

X =Ty (1=2)No RS (52)



Where y(J) is the gamma function, and J is the multipolar interaction parameter, which takes the

value of J=10 for Eu**.
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Figure S3. Comparison between PL decay fittings for an only-phosphors sample employing

different decay models: (a) single exponential, (b) biexponential and (c) Inokuti-Hirayama model.

Calculated reduced chi-square x? values are: (a) 1.80, (b) 1.15 and (c) 1.22.
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Figure S4. Bi-exponential fitting parameters used for PL decay measurements. Lifetimes of both

long (a) and short (b) components are included as well as its corresponding weights (c-d).
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Figure S5. Absolute quantum yield measurements for samples with different effective refractive

index.
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Figure S6. Calculated non-radiative rates for the two components of the bi-exponential PL decay.



The relationship between PLQY and transition rates in the Inokuti-Hirayama model can be made

as follows:

_ Trad
PLQY = (1+(Ro/R)) Tint (83)

where R is the average distance between RE cations in the nanoparticle, which can be estimated
from the doping concentration (10% in our case). Using this expression combined with PL decay
fittings and PLQY measurements we can separate between the radiative and non-radiative

components of the decay as shown in Figure S7.
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Figure S7. Radiative rate (red bottom bars), non-radiative rate (orange middle bars) and Eu-Eu
transfer rate (grey top bars) obtained by using the Inokuti-Hirayama model given by Equations
S1-83. Black dashed dotted line corresponds to our empirical correction (also shown in Figure 5).

Each bar corresponds to the average of the samples with the same effective refractive index.



