Supporting Information

Ti-doped Iron Phosphide Nanoarrays Grown on Carbon Cloth as a Selfsupported Electrode for Enhanced Electrocatalytic Nitrogen Reduction

Senhao Wang,^a Yuan Wang,^a* Tian C. Zhang,^b Xu Ji,^a Shaojun Yuan^a*

^a Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
^b Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
*Corresponding author: E-mail: <u>wangyuan2022@scu.edu.cn</u> (Y. Wang), <u>ysj@scu.edu.cn</u> (S.J. Yuan), Tel/fax: +86-28-85405201

S1. Supplementary Experimental

S1.1. Determination of NH₃

The yield of NH₃ production was determined by the indophenol blue method. 50 μ L oxidizing solution (4.5% NaClO and 0.75 M NaOH), 500 μ L coloring solution (0.32 M NaOH and 0.4 M C₇H₅NaO₃), and 50 μ L catalytic solution (10 g L⁻¹ C₅FeN₆Na₂O·2H₂O) are added sequentially to the 4 mL tested electrolyte. The mixed solution is placed in the dark for 1 h, then determines the characteristic peak at 660 nm by an UV-vis spectrophotometer (UV-TU1810PC, Meishi Instrument, China). The fitted standard curve (y = 0.486x + 0.030, R² = 0.999) obtained by performing absorbance tests on NH₄Cl solutions with different concentrations shows a good linear relationship between the absorbance and concentration of NH₃.

S1.2. Determination of N₂H₄

The possible by-product N_2H_4 during the NRR electro-reduction was performed by the Watt and Chrisp method. The coloring solution is prepared by $C_9H_{11}NO$ (5.99 g), concentrated HCl (30 mL) and C_2H_5OH (300 mL). Add 1 mL the above solution to 1 mL tested electrolyte.

The mixed solution is placed for 15 min, then determines the characteristic peak at 455 nm by an UV-vis spectrophotometer. The fitted standard curve (y = 0.816x + 0.018, $R^2 = 0.999$) obtained by performing absorbance tests on N₂H₄ solutions of different concentrations shows a good linear relationship between the absorbance and concentration of N₂H₄.

Fig. S1. (a) SEM image of Ti-FeP/CC at higher magnification. (b-d) TEM images of nanorod Ti-FeP/CC.

Fig. S2. (a and b) SEM images of FeP/CC. (c) SEM image and corresponding EDX elemental mapping images of FeP/CC.

(a) ²		elem	ent atom	(%)	面总谱图
Ē		Fe	9 11.	53	
-	P	P	16.	36	
/ə/s 2		Ti	0.3	2	
e -		0	20.9	94	
-	C Fe	С	50.3	35	
-			Ū Ū		e)
0	0 2				
			0		8 KEV
$(\mathbf{b})^{\mathbf{b}}$,		8 KeV
(b)		element	atom (%)		8 KeV
(b)		element Fe	atom (%) 10.96		5 keV
(b)		element Fe P	atom (%) 10.96 15.55		5 KeV
cbs/e/		element Fe P O	atom (%) 10.96 15.55 21.99		5 KeV
(b)		element Fe P O C	atom (%) 10.96 15.55 21.99 51.50		2 xev 國憲法國
(b)		element Fe P O C	atom (%) 10.96 15.55 21.99 51.50		5 KeV 國際議團

Fig. S3. EDX spectrum of Ti-FeP/CC (a) and FeP/CC (b).

Fig. S4. The magnified XRD patterns of Fe_2O_3/CC , $Ti-Fe_2O_3/CC$, FeP/CC and Ti-FeP/CC ranged from 30° to 40°.

Fig. S5. (a) XPS survey spectra of Ti-FeP/CC and FeP/CC. High resolution XPS spectra of Ti-FeP/CC: (b) O 1s; and (c) C 1s.

Table S1. Solution resistance (R_s) and charge transfer resistance (R_{ct}) of Ti-FeP/CC and FeP/CC determined by EIS spectra.

Catalyst	R _s (ohm)	R _{ct} (ohm)	Equivalent circuit diagram
Ti-FeP/CC	11.065	0.06405	R_s CPE W_s
FeP/CC	11.114	0.09486	

Fig. S6. (a) UV-vis spectra of various NH_4^+ concentrations. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S7. UV-vis spectra of various N_2H_4 concentrations. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S8. Chronoamperometry curves of FeP/CC in N_2 -saturated 0.1 M Na_2SO_4 solution at different potentials for 2 h.

Fig. S9. UV-vis absorption spectra of electrolytes obtained by FeP/CC at different potentials stained with the indophenol indicator.

Fig. S10. NH₃ yield and Faradaic efficiency of FeP/CC at corresponding potentials.

Fig. S11. UV-vis absorption spectra of NH_4^+ on different electrodes at -0.30 V after 2 h electrolysis.

Fig. S12. UV-vis absorption spectra of NH_4^+ on Ti-FeP/CC at different potentials after electrolysis for 2 h under different electrochemical conditions.

Fig. S13. XRD patterns of the Ti-FeP/CC electrode after NRR stability measurement.

Fig. S14. SEM image of the Ti-FeP/CC after NRR stability measurement.

Fig. S15. Long-term current density time curve at -0.3 V (vs. RHE) for 48 h.

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.
Ti-FeP/CC	0.1 M Na ₂ SO ₄	10.93 µg h ⁻¹ cm ⁻² (1.79×10 ⁻¹⁰ mol s ⁻¹ cm ⁻¹)	10.77	This Work
FeS@MoS ₂	0.1 M HCl	8.45 μg h ⁻¹ cm ⁻²	2.96	1
NH ₂ -MIL-88B-Fe	0.1 M Na ₂ SO ₄	1.205×10 ⁻¹⁰ mol s ⁻¹ cm ⁻¹	12.45	2
CoFe ₂ O ₄	0.1 M Na ₂ SO ₄	4.22×10 ⁻¹¹ mol s ⁻¹ cm ⁻¹	6.2	3
MoN NA	0.1 M HCl	3.01×10 ⁻¹⁰ mol s ⁻¹ cm ⁻¹	1.15	4
TiO ₂ /Ti	0.1 M Na ₂ SO ₄	9.16×10 ⁻¹¹ mol s ⁻¹ cm ⁻¹	2.50	5
Al-Co ₃ O ₄	0.1 M KOH	6.48×10 ⁻¹¹ mol s ⁻¹ cm ⁻¹	6.25	6
PdRu NS-NF	0.1 M KOH	20.46 µg h ⁻¹ cm ⁻²	2.11	7
VN/TM	0.1 M HCl	8.40×10 ⁻¹¹ mol s ⁻¹ cm ⁻¹	2.25	8
Fe ₂ O ₃ -CNT	KHCO ₃	$2.2 \times 10^{-3} \ \mu g \ h^{-1} \ cm^{-2}$	0.03	9
CuO/RGO	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	1.8×10 ⁻¹⁰ mol s ⁻¹ cm ⁻¹	3.9	10

Table S2. Comparison of NRR performance of previously reported transition metal-based catalysts.

References

- 1. Y. Guo, Z. Yao, B. J. J. Timmer, X. Sheng, L. Fan, Y. Li, F. Zhang and L. Sun, *Nano Energy*, 2019, **62**, 282-288.
- 2. X. Yi, X. He, F. Yin, T. Yang, B. Chen and G. Li, J. Mater. Sci., 2020, 55, 12041-12052.
- 3. M. I. Ahmed, S. Chen, W. Ren, X. Chen and C. Zhao, *Chem. Commun.*, 2019, **55**, 12184-12187.
- 4. L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, *ACS Sustain*. *Chem. Eng.*, 2018, **6**, 9550-9554.
- 5. R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, *ACS Appl. Mater. Interfaces*, 2018, **10**, 28251-28255.
- X.-W. Lv, Y. Liu, R. Hao, W. Tian and Z.-Y. Yuan, ACS Appl. Mater. Interfaces, 2020, 12, 17502-17508.
- 7. Y. Li, H. Yu, Z. Wang, S. Liu, Y. Xu, X. Li, L. Wang and H. Wang, *Int. J. Hydrogen Energy*, 2020, **45**, 5997-6005.
- 8. R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, *ACS Sustain. Chem. Eng.*, 2018, **6**, 9545-9549.
- 9. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem., Int. Ed.*, 2017, **56**, 2699-2703.
- 10. F. Wang, Y.-p. Liu, H. Zhang and K. Chu, ChemCatChem, 2019, 11, 1441-1447.