Supporting Information

Printing Conformal and Flexible Copper Networks for Multimodal Pressure

and Flow Sensing

Saurabh Khuje,^a Abdullah Islam,^a Jian Yu,^{b,*} Shenqiang Ren^{a,*}

^aDepartment of Materials Science and Engineering, University of Maryland, College Park,

Maryland, 20742, United States

^b DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United

States

*Email: jian.h.yu.civ@army.mil; sren@umd.edu.

Figure S1. DSC curves for polycarbonate evaluated in air and in nitrogen environments.

Figure S2. SEM images of unsintered copper nanoplates. (a) $500 \times$ magnification. (b) $1000 \times$ magnification. (c) $2500 \times$ magnification. (d) $5000 \times$ magnification.

Figure S3. SEM images of unsintered copper nanoplates hot-pressed at 150°C. (a) $500 \times$ magnification. (b) $1000 \times$ magnification. (c) $2500 \times$ magnification. (d) $5000 \times$ magnification.

Figure S4. SEM images of unsintered copper nanoplates hot-pressed at 180° C. (a) $500 \times$ magnification. (b) $1000 \times$ magnification. (c) $2500 \times$ magnification. (d) $5000 \times$ magnification.

Figure S5. SEM images of unsintered copper nanoplates hot-pressed at 200°C. (a) $500 \times$ magnification. (b) $1000 \times$ magnification. (c) $2500 \times$ magnification. (d) $5000 \times$ magnification.

Figure S6. Reliability curves for the temperature sensor at room temperature, 30°C and 50°C.

Figure S7. Response time for sensor under a pressure of 557.2 Pa

Figure S8. (a) Plot depicting the response time of a commercial Force Sensitive Resistor (FSR). (b) Sensitivity vs Pressure plot for the commercial FSR sensor.

Figure S9. Sensor utilized for strain sensing at different strain rates applied via a mechanial test setup.

Figure S10. Optical image of the modified sensor with the dipole antenna.

Figure S11. Plot depicting negligible change in the reflection coefficient (S_{11}) when the antenna is in a bent state from its intial straigth position.

Material	Cost	Conductivity	Response	Sensitivity	Scalability
			time		
Copper NPL (This work)	Low	2.3 MS/m	130ms	$0.42 \ kPa^{-1}$	High
Graphene/C foam hybrid ¹	High (freeze drying + thermal annealing)	0.2 S/cm	<10s	0.19 kPa ⁻¹	Low
Graphene Porous network ²	High	2.0×10^2 S/m	100ms	0.09 kPa ⁻¹	Low
Carbon cotton ³	Medium (pyrolyzed at 900°C for 1 h in N ₂ atmosphere)	11 S/m	100ms	0.33 kPa ⁻¹	Medium

Table S1. Comparison table for radar chart in Figure 1.

Au/PET electrode ⁴	High	1.7 MS/m	20ms	0.42 kPa ⁻¹	Medium
	(Precious				
	Metal)				
Copper Nanowire-	Moderately	1.6 - 12.8	9ms	0.7 kPa ⁻¹	Medium
Based Aerogel ⁵	High (freeze	S/cm			
	drying				
	involved)				
Silver	Medium	25000 S/m	16ms	67.3 kPa ⁻¹	High
Nanowire/Ethylene-					
co-vinyl Acetate					
Composite Films ⁶					

References

- 1. J. Kuang, Z. Dai, L. Liu, Z. Yang, M. Jin and Z. Zhang, *Nanoscale*, 2015, 7, 9252-9260.
- 2. Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang, N. Deng, Y. Yang and T.-L. Ren, ACS applied materials & interfaces, 2016, 8, 26458-26462.
- 3. Y. Li, Y. A. Samad and K. Liao, *Journal of Materials Chemistry A*, 2015, **3**, 2181-2187.
- 4. Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian, X. Li, L. Wang, D. Wang and B. Lu, *ACS applied materials & interfaces*, 2019, **11**, 17796-17803.
- 5. X. Xu, R. Wang, P. Nie, Y. Cheng, X. Lu, L. Shi and J. Sun, ACS applied materials & *interfaces*, 2017, **9**, 14273-14280.
- 6. W. He, G. Li, S. Zhang, Y. Wei, J. Wang, Q. Li and X. Zhang, *Acs Nano*, 2015, **9**, 4244-4251.