Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Multifunctional polyimide-based micro/nanostructured films with triple Janus property achieved by Femtosecond laser

Jiaqing Pei,^a Kai Yin^{*a,b}, Tingni Wu^a, Lingxiao Wang,^a Qinwen Deng^a, Yin Huang,^a Kai Wang^c, Christopher J. Arnusch^d

^a Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and

Electronics, Central South University, Changsha, 410083, China.

^b State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

^c School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China.

^d Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, the Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 84990, Israel

This file contains Supplementary Experimental Section, Figures S1-S10.

*To whom correspondence should be addressed.

*Corresponding author: kaiyin@csu.edu.cn

2µm

Figure S1.SEM images of pristine PI surface.

Figure S2.SEM images of various positions of the HPS surface.

Figure S3.SEM images of various positions of the AGNWs@LLS surface.

Figure S4. Elemental chemical composition and maps of pristine PI surface.

a	Element	Weight%	Atomic%	b	Element	Weight%	Atomic%
	СК	51.27	57.14		СК	78.41	82.06
	N K	17.55	16.77		NK	8.77	7.87
	ОК	31.18	26.09		ОК	12.82	10.07
0	Element	Weight%	Atomic%	Ь	Element	Weight%	Atomic%
c	Element	Weight%	Atomic%	d	Element C K	Weight%	Atomic% 28.77
c	Element C K	Weight% 58.87	Atomic% 64.63	d	Element C K N K	Weight% 4.71 0.25	Atomic% 28.77 1.32
c	Element C K N K	Weight% 58.87 12.46	Atomic% 64.63 11.73	d	Element C K N K O K	Weight% 4.71 0.25 1.06	Atomic% 28.77 1.32 4.87
c	Element CK NK	Weight% 58.87 12.46	Atomic% 64.63 11.73	d	Element C K N K O K Cl K	Weight% 4.71 0.25 1.06 0.84	Atomie% 28.77 1.32 4.87 1.74

Figure S5. Elemental content of a pristine PI, b HPS, c LLS and d AGNWs@LLS surfaces.

Figure S6. Static water contact angle of pristine PI surface.

Figure S7. The process of water impacting the HPS surface.

Figure S8. Dynamic wetting behaviors of a water droplet (3 μ L) on LLS surface.

Figure S9. a A water droplet sliding on the HPS surface. b WACs of various positions for the HPS surface.

Figure S10.SEM images of AGNWs@LLS surface under **a** fold test and **b** temperature test.