Surface modification effect on contrast agent efficiency for X-rays based Spectral Photon-Counting Scanner / Luminescence Imaging: from fundamental study to in vivo proof of concept.

Loic Cuau^a, Pia Akl^{b,c}, A Gautheron^{b,d}, Angèle Houmeau^b, Frédéric Chaput^a, Ala Yaromina^e, Ludwig Dubois^e, Philippe Lambin^e, Szilvia Karpati^a, Stephane Parola^a, B. Rezaeifar^{e,f}, Jean-Baptiste Langlois^g, Salim A. Si-Mohamed^{b,c}, Bruno Montcel^b, Philippe Douek^{b,c}, Frederic Lerouge^a*

- a Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, F69364 Lyon, France
- b Université de Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, LYON, France.

c Department of Radiology, Hospices Civils de Lyon, 69500 Bron, France.

- d Université Jean Monnet Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France
- e Department of Precision Medicine, The M-Lab, GROW School of Oncology, Maastricht University, Maastricht, 6200, MD, The Netherlands.

f Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium

g CERMEP-imagerie du vivant, 59 boulevard Pinel, 69500 Bron

* corresponding author

Fig. S1 Characterization of **NSc. A)** TEM image of $Gd_{0,90}Tb_{0,10}F_3$ composition. **B)** HRTEM of a nanoscintillator with the $Gd_{0,90}Tb_{0,10}F_3$ composition **C)** Measured XRPD pattern of various composition (x is the molar ratio of Terbium) corresponding to the orthorhombic phase (*Pnma* space group) of GdF₃.

Composition	Theoretical	ICP
Gd _{0.95} Tb _{0.05} F ₃	0,05	0,06
$Gd_{0.90}Tb_{0.10}F_3$	0,10	0,11
Gd _{0.85} Tb _{0.15} F ₃	0,15	0,18
Gd _{0.80} Tb _{0.20} F ₃	0,25	0,23

Table S1 Theoretical and measured Tb³⁺/Gd³⁺ ratio for the various NCs compositions

Table S2 DLS measurements (hydrodynamic diameters *Dh* and Polydispersity index PDI) on the various composition in water (pH=6) and zeta potential (ZP) measurements.

Composition	Dh (nm)	PDI	ZP (mV)
Gd _{0.95} Tb _{0.05} F ₃	16 ± 3	0,09	48 ± 2 mV
$Gd_{0.90}Tb_{0.10}F_3$	13 ± 3	0,11	$45\pm2mV$
$Gd_{0.85}Tb_{0.15}F_{3}$	13 ± 3	0,10	$44 \pm 2 \text{ mV}$
Gd _{0.80} Tb _{0.20} F ₃	16 ± 3	0,11	$49\pm2mV$

Elements	Atomic percentages
Gd	39,21
Tb	3.74
F	57.11

В

Fig. S2 EDX analysis of $Gd_{0.90}Tb_{0.10}F_3$ composition A) Spectrum of the NSc B) Analysis results.

Fig. S3 Excitation spectra of the $Gd_{0.90}Tb_{0.10}F_3$ NSc.

Fig S4. **A)** Spectrum of X-rays with peak energy of 120 keV (obtained using SpekCalc software (PMID: 19724100). Right : Parameters used for calculation. **B)** Increase in the intensity of background with increasing X-ray energy.

Fig S5. A) General picture of the Spectral photo counting scanner CT. **B)** Picture of the experimental setup with optical fiber immersed in a colloidal suspension within an Eppendorf tube. The fiber is linked to a spectrophotometer for luminescence measurements.

Fig S6. FTIR spectra of $Gd_{0.90}Tb_{0.10}F_3$ after surface modification, main bands are circled in purple boxes **A)** FTIR monitoring of NSc surface modification with SiO₂@PEG layer at each steps of the process. **B)** Spetra of the NSc before (blue line) and after (black line) grafting of TPP molecules. **C)** Spectra of the NSc before (red line) and after (black line) grafting of PAA polymer. **D)** Spectra of the NSc before (blue line) and after (red line) grafting of PEG polymer.

Fig S7. HRTEM of $Gd_{0.90}Tb_{0.10}F_3$ after surface modification with various ligands. **A)** $Gd_{0.90}Tb_{0.10}F_3@TPP$. **B)** $Gd_{0.90}Tb_{0.10}F_3@PAA$. **C)** $Gd_{0.90}Tb_{0.10}F_3@PEG$. D) $Gd_{0.90}Tb_{0.10}F_3@SiO_2@PEG$. Picture on the left as observed, picture on the right same area with schematic representation of the nanoparticles (black line) and the silica layer (red line).

Fig S8. A) PXRD of $Gd_{0.90}Tb_{0.10}F_3$ before (red line) and after (black line) cleaning treatment of the remaining 2-pyrolidinone. **B)** TEM picture of cleaned $Gd_{0.90}Tb_{0.10}F_3$. **C)** FTIR spectra of $Gd_{0.90}Tb_{0.10}F_3$ before (red line) and after (black line) cleaning treatment of the remaining 2-pyrolidinone.

Fig S9. Surviving fraction of clonogenic MDA-MB-231 breast cancer cells upon treatment with the range of nanohybrids concentration for 24 h. Mean of 3 biological repeats ± SD.