Electronic Supplementary Information

Supramolecular assembly of dendronized spiropyrans in aqueous solutions into nanospheres with photo- and thermo- responsive chiralities

Shanbin Qi, Xueting Lu, Wenli Mei, Guanglei Gu, Wen Li* and Afang Zhang*

International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China

Table of Contents

Fig. S1 ¹ H (DMSO- d_6) and ¹³ C (CDCl ₃) NMR spectrum of compound 2a at 295 K	S4
Fig. S2 ¹ H (DMSO-d ₆) and ¹³ C (CDCl ₃) NMR spectrum of compound 2c at 295 K	
Fig. S3 ¹ H and ¹³ C NMR spectrum of compound SP-GA-MeG1 in DMSO-d ₆ at 295 K	S6
Fig. S4 ¹ H and ¹³ C NMR spectrum of compound SP-GA-EtG1 in DMSO-d ₆ at 295 K	S7
Fig. S5 ¹ H and ¹³ C NMR spectrum of compound $3a$ in DMSO- d_6 at 295 K	S8
Fig. S6 ¹ H and ¹³ C NMR spectrum of compound SP-AG-MeG1 in DMSO-d ₆ at 295 K	S9
Fig. S7 ¹ H and ¹³ C NMR spectrum of compound 4a in DMSO- d_6 at 295 K	S10
Fig. S8 ¹ H and ¹³ C NMR spectrum of compound MeG1-GA-SP in DMSO-d ₆ at 295 K	S11
Fig. S9 ESI-MS spectrum of compound 2a (pos. mode, THF)	S12
Fig. S10 ESI-MS spectrum of compound 2c (pos. mode, DCM)	S12
Fig. S11 ESI-MS spectrum of compound SP-GA-MeG1 (pos. mode, DCM)	S12
Fig. S12 ESI-MS spectrum of compound SP-GA-EtG1 (pos. mode, DCM)	S13
Fig. S13 ESI-MS spectrum of compound 3a (pos. mode, DCM)	S13
Fig. S14 ESI-MS spectrum of compound SP-AG-MeG1 (pos. mode, DCM)	S14
Fig. S15 ESI-MS spectrum of compound 4a (pos. mode, DCM)	S14
Fig. S16 ESI-MS spectrum of compound MeG1-GA-SP (pos. mode, DCM)	S14
Fig. S17 CD spectra of SP-GA-MeG1 in aqueous solutions with different concentration a	at 10 °C

Fig. S18 UV/vis spectra in water of SP-GA-EtG1 after irradiation with UV (a) and re-irradiation with visible light (b), of SP-AG-MeG1 after irradiation with UV (d) and re-irradiation with visible light (e) and of MeG1-GA-SP after irradiation with UV (g) and re-irradiation with visible light (h), as well as absorbance at 516 nm after alternative irradiation with UV and visible light for **SP-GA-EtG1** (c), **SP-AG-MeG1** (f), **MeG1-GA-SP** (i). Insets in (a), (b), (d), (e), (g) and (h): plots of abs at around 516 nm against irradiation time. $\lambda_{UV} = 254$ nm; $\lambda_{Vis} > 450$ nm; T = 10 °C, C Fig. S19 Fluorescence spectra in water of SP-GA-EtG1 after irradiation with UV (a) and reirradiation with visible light (b), of SP-AG-MeG1 after irradiation with UV (d) and re-irradiation with visible light (e), and of MeG1-GA-SP after irradiation with UV (g) and re-irradiation with visible light (h), as well as fluorescence intensity at 630 nm after alternative irradiation with UV and visible light for SP-GA-EtG1 (c), SP-AG-MeG1 (f), and MeG1-GA-SP (i). $\lambda_{ex} = 535$ nm, $\lambda_{\rm UV} = 254 \text{ nm}, \lambda_{\rm Vis} > 450 \text{ nm}, T = 10 \text{ °C}, C = 0.15 \text{ mg} \cdot \text{mL}^{-1}$S16 Fig. S20 Plots of hydrodynamic radius of SP-GA-EtG1 (a), SP-AG-MeG1 (b), and MeG1-GA-**SP** (c) after irradiation with UV and visible light. $\lambda_{UV} = 254$ nm; $\lambda_{Vis} > 450$ nm; T = 10 °C, C = Fig. S21 AFM images of SP-GA-EtG1 after irradiation with UV (a) and visible light (b), SP-AG-MeG1 after irradiation with UV (c) and visible light (d), as well as MeG1-GA-SP after irradiation with UV (e) and visible light (f). $\lambda_{UV} = 254 \text{ nm}$; $\lambda_{Vis} > 450 \text{ nm}$; T = 10 °C, $C = 0.15 \text{ mg} \cdot \text{mL}^{-1}$, scale Fig. S22 CD and UV/vis spectra in aqueous solutions of SP-GA-EtG1 irradiated by UV (a) and re-irradiation with visible light (b), of SP-AG-MeG1 irradiated by UV (c) and re-irradiation with visible light (d), as well as MeG1-GA-SP irradiated by UV (e) and re-irradiation with visible light (f). Insets in (a), (b), (c), (d), (e) and (f): plots of molar ellipticity at around 380 nm (θ_{380}) against

irradiation time. λ_{UV} = 254 nm; λ_{Vis} > 450 nm; T = 10 °C, C = 0.3 mg·mL ⁻¹ S18
Fig. S23 Plots of transmittance versus temperature for SP-GA-EtG1 (a), SP-AG-MeG1 (b) and
MeG1-GA-SP (c). Heating rate = $0.5 \text{ °C} \cdot \text{min}^{-1}$, C = $0.5 \text{ mg} \cdot \text{mL}^{-1}$, wavelength = 700 nm. Inset:
photographs of the aqueous solutions below and above the $T_{cp}s$
Fig. S24 Microscopic photographs of SP-GA-EtG1 below (a) and above (b) the $T_{\rm cp}$, SP-AG-
MeG1 below (c) and above (d) the T_{cp} , as well as MeG1-GA-SP below (e) and above (f) the T_{cp} .
$C = 0.5 \text{ mg} \cdot \text{mL}^{-1} \dots S19$
Fig. S25 CD and UV/vis spectra in aqueous solutions of SP-GA-EtG1 through heating (a) and
cooling (b), SP-AG-MeG1 through heating (d) and cooling (e), MeG1-GA-SP through heating (g)
and cooling (h), as well as the first Cotton effect at around 380 nm (θ_{380}) after several cycles
heating and cooling (through irradiation with visible light): SP-GA-EtG1 (c), SP-AG-MeG1 (f),
MeG1-GA-SP (i). Inset in (a), (b), (d), (e), (g) and (h): plots of molar ellipticity at around 380 nm
(θ) against temperature. Heating rate = 2.0 °C·min ⁻¹ ; λ_{Vis} > 450 nm; C = 0.3 mg·mL ⁻¹ S20
Fig. S26 ¹ H NMR spectra in D_2O at varied temperatures of SP-GA-EtG1 (a), SP-AG-MeG1 (b)
and MeG1-GA-SP (c). $C = 2.5 \text{ mg} \cdot \text{mL}^{-1}$
Fig. S27 NOESY spectra of SP-GA-EtG1 at 10 °C (a) and 55 °C (b), SP-AG-MeG1 at 10 °C (c)
and 50 °C (d), as well as MeG1-GA-SP at 10 °C (e) and 50 °C (f). $C = 5 \text{ mg} \cdot \text{mL}^{-1}$ S22

Fig. S1 ¹H (DMSO-*d*₆) and ¹³C (CDCl₃) NMR spectrum of compound 2a at 295 K.

Fig. S2 ¹H (DMSO-d6) and ¹³C (CDCl₃) NMR spectrum of compound 2c at 295 K.

Fig. S3 ¹H and ¹³C NMR spectrum of compound SP-GA-MeG1 in DMSO- d_6 at 295 K.

Fig. S4 ¹H and ¹³C NMR spectrum of compound SP-GA-EtG1 in DMSO- d_6 at 295 K.

Fig. S5 ¹H and ¹³C NMR spectrum of compound **3a** in DMSO- d_6 at 295 K.

Fig. S6 ¹H and ¹³C NMR spectrum of compound SP-AG-MeG1 in DMSO-*d*₆ at 295 K.

Fig. S7 ¹H and ¹³C NMR spectrum of compound 4a in DMSO- d_6 at 295 K.

Fig. S8 ¹H and ¹³C NMR spectrum of compound MeG1-GA-SP in DMSO- d_6 at 295 K.

Fig. S9 ESI-MS spectrum of compound 2a (pos. mode, THF).

Fig. S10 ESI-MS spectrum of compound 2c (pos. mode, DCM).

Fig. S11 ESI-MS spectrum of compound SP-GA-MeG1 (pos. mode, DCM).

Fig. S12 ESI-MS spectrum of compound SP-GA-EtG1 (pos. mode, DCM).

Fig. S13 ESI-MS spectrum of compound 3a (pos. mode, DCM).

Fig. S14 ESI-MS spectrum of compound SP-AG-MeG1 (pos. mode, DCM).

Fig. S15 ESI-MS spectrum of compound 4a (pos. mode, DCM).

Fig. S16 ESI-MS spectrum of compound MeG1-GA-SP (pos. mode, DCM).

Fig. 17 CD spectra of SP-GA-MeG1 in aqueous solutions with different concentration at 10 °C.

Fig. S18 UV/vis spectra in water of **SP-GA-EtG1** after irradiation with UV (a) and re-irradiation with visible light (b), of **SP-AG-MeG1** after irradiation with UV (d) and re-irradiation with visible light (e) and of **MeG1-GA-SP** after irradiation with UV (g) and re-irradiation with visible light (h), as well as absorbance at 516 nm after alternative irradiation with UV and visible light for **SP-GA-EtG1** (c), **SP-AG-MeG1** (f), **MeG1-GA-SP** (i). Insets in (a), (b), (d), (e), (g) and (h): plots of abs at around 516 nm against irradiation time. $\lambda_{UV} = 254$ nm; $\lambda_{Vis} > 450$ nm; T = 10 °C, C = 0.15 mg·mL⁻¹.

Fig. S19 Fluorescence spectra in water of **SP-GA-EtG1** after irradiation with UV (a) and reirradiation with visible light (b), of **SP-AG-MeG1** after irradiation with UV (d) and re-irradiation with visible light (e), and of **MeG1-GA-SP** after irradiation with UV (g) and re-irradiation with visible light (h), as well as fluorescence intensity at 630 nm after alternative irradiation with UV and visible light for **SP-GA-EtG1** (c), **SP-AG-MeG1** (f), and **MeG1-GA-SP** (i). $\lambda_{ex} = 535$ nm, $\lambda_{UV} = 254$ nm, $\lambda_{Vis} > 450$ nm, T = 10 °C, C = 0.15 mg·mL⁻¹.

Fig. S20 Plots of hydrodynamic radius of **SP-GA-EtG1** (a), **SP-AG-MeG1** (b), and **MeG1-GA-SP** (c) after irradiation with UV and visible light. $\lambda_{UV} = 254$ nm; $\lambda_{Vis} > 450$ nm; T = 10 °C, C = 0.15 mg·mL⁻¹.

Fig. S21 AFM images of SP-GA-EtG1 after irradiation with UV (a) and visible light (b), SP-AG-MeG1 after irradiation with UV (c) and visible light (d), as well as MeG1-GA-SP after irradiation with UV (e) and visible light (f). $\lambda_{UV} = 254$ nm; $\lambda_{Vis} > 450$ nm; T = 10 °C, C = 0.15 mg·mL⁻¹, scale bar = 2 um.

Fig. S22 CD and UV/vis spectra in aqueous solutions of **SP-GA-EtG1** irradiated by UV (a) and re-irradiation with visible light (b), of **SP-AG-MeG1** irradiated by UV (c) and re-irradiation with visible light (d), as well as **MeG1-GA-SP** irradiated by UV (e) and re-irradiation with visible light (f). Insets in (a), (b), (c), (d), (e) and (f): plots of molar ellipticity at around 380 nm (θ_{380}) against irradiation time. $\lambda_{UV} = 254$ nm; $\lambda_{Vis} > 450$ nm; T = 10 °C, C = 0.3 mg·mL⁻¹.

Fig. S23 Plots of transmittance versus temperature for SP-GA-EtG1 (a), SP-AG-MeG1 (b) and MeG1-GA-SP (c). Heating rate = $0.5 \text{ °C} \cdot \text{min}^{-1}$, C = $0.5 \text{ mg} \cdot \text{mL}^{-1}$, wavelength = 700 nm. Inset: photographs of the aqueous solutions below and above their T_{cp} s.

Fig. S24 Microscopic photographs of SP-GA-EtG1 below (a) and above (b) the T_{cp} , SP-AG-MeG1 below (c) and above (d) the T_{cp} , as well as MeG1-GA-SP below (e) and above (f) the T_{cp} . C = 0.5 mg·mL⁻¹.

Fig. S25 CD and UV/vis spectra in aqueous solutions of SP-GA-EtG1 through heating (a) and cooling (b), SP-AG-MeG1 through heating (d) and cooling (e), MeG1-GA-SP through heating (g) and cooling (h), as well as the first Cotton effect at around 380 nm (θ_{380}) after several cycles heating and cooling (through irradiation with visible light): SP-GA-EtG1 (c), SP-AG-MeG1 (f), MeG1-GA-SP (i). Inset in (a), (b), (d), (e), (g) and (h): plots of molar ellipticity at around 380 nm (θ) against temperature. Heating rate = 2.0 °C·min⁻¹; $\lambda_{Vis} > 450$ nm; C = 0.3 mg·mL⁻¹.

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Chemical Shift (ppm)

Fig. S26 ¹H NMR spectra in D₂O at varied temperatures of SP-GA-EtG1 (a), SP-AG-MeG1 (b) and MeG1-GA-SP (c). $C = 2.5 \text{ mg} \cdot \text{mL}^{-1}$.

Fig. S27 NOESY spectra of **SP-GA-EtG1** at 10 °C (a) and 55 °C (b), **SP-AG-MeG1** at 10 °C (c) and 50 °C (d), as well as **MeG1-GA-SP** at 10 °C (e) and 50 °C (f). $C = 5 \text{ mg} \cdot \text{mL}^{-1}$.