Electronic Supporting Information

Dual-signalled magneto-optical barcodes with lanthanide-based

molecular cluster-aggregates

Diogo Alves Gálico,^a and Muralee Murugesu^{a*}

^a Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario

K1N 6N5, Canada.

Email: m.murugesu@uottawa.ca

Experimental Section

Synthesis of {[Ln₆(teaH)₆(NO₃)₆]: The synthetic procedure follows the previously reported synthesis.^{S1} Ho(NO₃)₃· GH_2O (0.6 mmol) was dissolved in MeOH/CH₂Cl₂ (5 mL : 15 mL), followed by the addition of triethanolamine (1.2 mmol) and triethylamine (4.8 mmol). After a few minutes, the reaction mixture resulted in a clear pink solution. This solution was stirred for four hours. During this time, a small amount of precipitate formed. The solution was filtered and layered with Et₂O. After two days, yellow crystals of [Ho₆(teaH)₆(NO₃)₆] appeared in an approximate yield of 58 % (crystalline product).

For {Er₆}, the same procedure was followed using 0.6 mmol of $Er(NO_3)_3 \cdot 6H_2O$. Yield = 62 % (pink crystalline product).

For {Ho₃Er₃}, the same procedure was followed using 0.3 mmol of Ho(NO₃)₃·6H₂O and 0.3 mmol of Er(NO₃)₃·6H₂O. Yield = 56 % (orange crystalline product).

Characterisation:

FTIR spectra were obtained in a Nicolet 6700 FT-IR Spectrometer (Thermo Scientific).

PXRD diffractograms were obtained in a Rigaku Ultima IV Diffractometer using Cu K α filtered radiation ($\lambda = 1.5401$ Å).

ICP analysis was performed in a 5110 ICP-OES Instrument (Agilent).

MCD measurements were performed on a Jasco J-1700 CD spectrometer and an Oxford SpectromagPT cryogen-free magneto-optical superconducting magnet system as depicted in Scheme S1. All the spectra were obtained in the 300 - 850 nm range, with three accumulations, a bandwidth of 2 nm, and a scan speed of 1000 nm/min. The samples were prepared as a 0.1 mg mL⁻¹ aqueous solution.

Scheme S1: Schematic representation of the experimental setup. The unpolarized light from a Xe lamp is circularly polarized inside the Jasco J-1700 CD spectrometer **(1)** monochromator and reaches the **(2)** detector after interacting with the sample. The sample is placed in a 1 cm optical path quartz cuvette and placed inside the **(3)** Oxford SpectromagPT cryogen-free magneto-optical superconducting magnet system.

Figures and Tables

Figure S1: Experimental PXRD diffractograms for **{Ho**₆**}**, **{Er**₆**}**, and **{Ho**₃**Er**₃**}** MCAs compared with the simulated for **{Er**₆**}** (CCDC number: 1876163).

Figure S2: FTIR spectra for {Ho₆}, {Er₆}, and {Ho₃Er₃} MCAs.

Figure S3: MCD spectra for **{Ho₃Er₃}** MCA obtained at 25 °C and under different applied magnetic fields. Dotted spectra refer to H = -0.5, -1.0, and -1.5 T magnetic fields.

Figure S4: Overlay between the MCD spectrum and the magneto-optical barcode read-out for **{Ho₃Er₃}** MCA with an applied magnetic field of (top) 1.0 T and (bottom) -1.0 T. This figure demonstrates the extra security feature attained in magneto-optical barcodes; the mirror-image obtained when reversing the magnetic field.

Figure S5: Comparison between the magneto-optical barcode read-out for **{Ho₆}**, **{Er₆**}, and **{Ho₃Er₃}** MCAs with an applied magnetic field of 1.0 T. This figure evidence the highest spectral complexity for the heterometallic MCA magneto-optical barcode.

Ho ^{III}		Er ^{III}	
Wavenumber / cm ⁻¹	Assignment	Wavenumber / cm ⁻¹	Assignment
30799	${}^{5}G_{2} \leftarrow {}^{5}I_{8}$	33319	${}^{2}P_{1/2} \leftarrow {}^{4}I_{15/2}$
29947	$({}^{3}F_{4},{}^{3}K_{6})^{5}I_{8}$	28224	$({}^{2}K_{15/2}, {}^{4}G_{7/2}) \leftarrow {}^{4}I_{15/2}$
28875	(⁵ G ₃ , ³ L ₉) ← ⁵ I ₈	27637	${}^{4}G_{9/2} \leftarrow {}^{4}I_{15/2}$
27678	(⁵ G₅, ³ H ₆) ← ⁵ I ₈	26631	${}^{4}G_{11/2} \leftarrow {}^{4}I_{15/2}$
26058	${}^{3}K_{7} \leftarrow {}^{5}I_{8}$	24756	$^{2}H_{9/2} \leftarrow ^{4}I_{15/2}$
25859	${}^{5}G_{4} \leftarrow {}^{5}I_{8}$	22712	${}^{4}F_{3/2} \leftarrow {}^{4}I_{15/2}$
23987	${}^{5}G_{5} \leftarrow {}^{5}I_{8}$	22376	${}^{4}F_{5/2} \leftarrow {}^{4}I_{15/2}$
22179	${}^{5}G_{6} \leftarrow {}^{5}I_{8}$	20715	${}^{4}F_{7/2} \leftarrow {}^{4}I_{15/2}$
21267	${}^{3}K_{8} \leftarrow {}^{5}I_{8}$	19337	(² H _{11/2} , ⁴ S _{3/2}) ← ⁴ I _{15/2}
21039	${}^{5}F_{2} \leftarrow {}^{5}I_{8}$	15455	${}^{4}F_{9/2} \leftarrow {}^{4}I_{15/2}$
20594	${}^{5}F_{3} \leftarrow {}^{5}I_{8}$	12597	${}^{4}I_{9/2} \leftarrow {}^{4}I_{15/2}$
18538	${}^{5}F_{4} \leftarrow {}^{5}I_{8}$	-	-
18381	${}^{5}S_{2} \leftarrow {}^{5}I_{8}$	-	-
15456	${}^{5}F_{5} \leftarrow {}^{5}I_{8}$	-	-
13212	${}^{5}I_{4} \leftarrow {}^{5}I_{8}$	-	-

Table S1: Energy levels of Ho^{III} and Er^{III}. Energies obtained from Carnall.^{S2}

References

[1] D. A. Gálico, J. S. Ovens and M. Murugesu, *Nanoscale*, 2020, **12**, 11435–11439.

[2] W. T. Carnall, H. Crosswhite and H. M. Crosswhite, Energy level structure and transition

probabilities in the spectra of the trivalent lanthanides in LaF₃, Argonne Nat. Lab. 78-XX-95 Rep.,

1977