Highly electron-deficient ultrathin Co nanosheets supported on mesoporous Cr₂O₃ for catalytic hydrogen evolution from ammonia borane

Jin Song^a and Fenglong Wu^{*a}

^a Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur

015000, China

E-mail: wufenglong1983@126.com

Calculation method of TOF value

The TOF value is calculated by the following equation.

$$TOF = \frac{3n_{NH_3BH_3}}{n_{metal}t}$$

In this equation, n_{metal} means the total molar amount of Co species on the surface of Cr₂O₃, t means the hydrogen evolution time, and $n_{NH_3BH_3}$ means the molar amount of NH₃BH₃ introduced in the system.

Support preparation

Preparation Of C_3N_4 : 4.99g urea were milled into powder and placed in muffle furnace 500 °C for 2h.

Preparation Of WO₃: WO₃ nanoparticles were prepared based on literature.¹ Specifically, WCl₆ (1.029g) and hexamethylenetetramine (0.1728g) was dissolved in 30mL n-butanol solution. After that the above solution was placed into autoclave and kept at 160 °C for 24 h. The obtained samples were washed with high purity water and absolute ethanol for several times and then heated at 70 °C for 10 h. Finally, the samples were calcined in muffle furnace at 500 °C for 2 h.

Preparation Of MoO₃: 0.99g ammonium molybdate tetrahydrate ($H_2MoN_6O_{24}$ 4 H_2O) were placed in muffle furnace 600 °C for 2h.

Fig. S1 XRD patterns of samples.

Fig. S2 TGA and DTG of the precursor sample of mesoporous Cr_2O_3 .

Fig. S3 TGA and DTG of the precursor sample of Cr₂O₃.

Fig S4 TEM and HRTEM images of Cr_2O_3 .

Fig. S5 EDS of Co/Cr₂O₃.

Fig. S6 N_2 adsorption-desorption isotherms of Co/Cr₂O₃.

Fig. S7 N_2 adsorption-desorption isotherms of mesoporous Cr_2O_3 .

Fig. S8 XPS spectra for Co/Cr₂O₃.

Fig. S9 Normalized XANES spectra of Cr foil, Cr_2O_3 , and Co/Cr_2O_3 at the Cr K-edge.

Fig. S10 Fourier transform EXAFS spectra of Cr foil, Cr_2O_3 , and Co/Cr_2O_3 at the Cr K-edge.

Fig. S11 Plots of time versus volume of H_2 evolution from NH_3BH_3 in the aqueous solution over Co/Cr_2O_3 under visible light irradiation, (b) TOF value and corresponding error bar.

Fig. S12 XRD patterns of samples.

Fig. S13 Mott-Schottky plots of C₃N₄.

Fig. S14 Mott-Schottky plots of MoO₃.

Fig. S15 Mott-Schottky plots of WO₃.

Fig. S16 Plots of time versus volume of H_2 evolution from NH_3BH_3 in the aqueous solution over Co/MoO₃ in dark.

Fig. S17 Profiles of time versus transient photocurrent density of the samples.

Fig. S18 EIS Nyquist plots of samples.

Fig. S19 (a) Plots of time versus volume of H_2 evolution from NH_3BH_3 in the aqueous solution over Ni-based catalysts in dark and under visible light irradiation, (b) corresponding TOF value.

Fig. S20 (a) Plots of time versus volume of H_2 evolution from NH_3BH_3 in the aqueous solution over Ni-based catalysts with photoactive semiconductor as support in dark and under visible light irradiation, (b) corresponding TOF value.

Fig. S21 The time evolutions of the DRIFTS spectra of NH₃BH₃ hydrolysis over

 Co/Cr_2O_3 catalyst

Fig. S22 Clean surface of (a) Cr_2O_3 and (b) Co/Cr_2O_3 .

Fig. S23 DFT calculated intermediate structures for the reactions of NH_3BH_3 hydrolysis on Co/Cr_2O_3 .

Fig. S24 Single unit cell of H_2O

References

X. Wang, F. Chen, M. Yang, L. Guo, N. Xie, X. Kou, Y. Song, Q. Wang, Y. Sun and G. Lu, *Sensor. Actuat. B: Chem.*, 2019, 289, 195–206.