Supporting Information on

Innovative Method for Controlled Synthesis of Bicomponent Monolayer Films Obtained by Reduction of Diazonium

Julien Billon, Anna Omelchuk, Viacheslav Shkirskiy, Sylvie Dabos-Seignon, Olivier Alévêque, Eric Levillain, Tony Breton and Christelle Gautier*

Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France

Corresponding author: <u>christelle.gautier@univ-angers.fr</u>

Table of content

SI-1 Synthesis and characterization of $aC_{12}Br$ compound	3
SI-2 AFM measurements	6
SI-3 Current versus scan rate	7
SI-4 Spectroscopic response recorded on $aC_{12}PDI$ in solution and on monolayers formed by diazonium reduction on gold	8
SI-5 XPS fitting curves for Cl 2p et Br 3d components	8

SI-1 Synthesis and characterization of aC₁₂Br compound

12-bromododecan-1-aminium (1)

500 mg of 1-aminododecanol (2.49 mmol) were added to 10 ml of HBr in a refluxing flask with stirring and heated for 18 hours. After cooling to room temperature, the mixture was filtered using Büchner funnel and the resulting solid was washed with water. Upon drying, a mass of 700 mg of a silver-grey solid was obtained in 81% yield.

NMR¹H (300 MHz, CD₃OD): δ = 3.44 ppm (t, J = 6.6 Hz, 2H), 2,86 ppm (t, J = 7.6 Hz, 2H), 1.84 ppm (m, 2H), 1.62 ppm (m, 2H), 1.47-1.32 ppm (m, 16H).

tert-butyl (4-((12-bromododecyl)carbamoyl)phenyl)carbamate (2)

In 60 mL of DCM, 344 mg of Boc-4-Abz-OH (1.45 mmol), 606 μ L of triethylamine (4.35 mmol - 3 eq), 196 mg of 12% hydrated 1-hydroxybenzotriazole (1.45 mmol - 1 eq) and 550 mg of O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (1.45 mmol - 1 eq) were dissolved. The mixture was stirred at room temperature for one hour and then 500 mg of 12-bromododecan-1-aminium (1.45 mmol - 1 eq) were added. After two days of stirring at room temperature, the precipitate was

collected on Büchner funnel. The product was subsequently purified by a chromatographic column with a 3% DCM/MeOH mixture. 190 mg of product were recovered as a white powder with a yield of 27%.

NMR¹H (400 MHz, CDCl₃): δ = 7.70 ppm (d, J = 11.6 Hz, 2H), 7.42 ppm (d, J = 11.6 Hz, 2H), 6.61 ppm (s, 1H), 6.02 ppm (s, 1H), 3.43 ppm (q, 2H), 3.41 ppm (t, 2H), 1.85 ppm (quint, J = 9.2 Hz, 2H), 1.61 ppm (quint, 2H), 1.52 ppm (s, 9H), 1.44-1.27 ppm (m, 16H).

aC₁₂Br

100 mg of 4-amino-N-(12-bromododecyl)benzamide were dissolved in 5 mL of trifluoroacetic acid at 0°C. The mixture was stirred for 30 min, still at 0°C. The acid was then neutralized by adding K_2CO_3 and the mixture was diluted beforehand with 100 mL. The product was then extracted three times with 50 mL of chloroform and the organic phase was dried over MgSO₄. The solvent was evaporated under vacuum, and a white solid of 70 mg was obtained in 89% yield.

NMR¹H (400 MHz, CDCl₃): δ = 7.58 ppm (d, J = 9 Hz, 2H), 6.65 ppm (d, J = 9 Hz, 2H), 5.96 ppm (s, 1H), 3.94 ppm (s, 2H), 3.40 ppm (m, 4H), 1.85 ppm (q, J = 6 Hz, 2H), 1.58 ppm (m, 2H), 1.20-1.45 ppm (m, 16H).

HRMS (MALDI-TOF, DIT): m/z = 383.1687 (MH⁺), calculated for $C_{19}H_{32}BrN_2O^+$: 383.17.

SI-2 AFM measurements

Figure SI-2. A. Depth profile of an area formed by AFM scratching of a C_{12} PDI layer obtained on a PPF substrate by reduction at 0 V for 5 min in a DCM solution containing 10^{-3} M d C_{12} PDI + 0.1 M nBu₄NPF₆. Insert: corresponding AFM image of the scratched area.

dC₁₂Br 100%

Figure SI-2. B. Depth profile of an area formed by AFM scratching of a $C_{12}Br$ layer obtained on a PPF substrate by reduction at 0 V for 5 min in a DCM solution containing $10^{-3}M dC_{12}Br + 0.1 M nBu_4NPF_6$. Insert: corresponding AFM image of the scratched area.

Figure SI-2. C. Depth profile of an area formed by AFM scratching of a mixed $C_{12}PDI/C_{12}Br$ layer obtained on a PPF substrate by reduction at 0 V for 5 min in a DCM solution containing $10^{-3}M$ d $C_{12}PDI/dC_{12}Br$ 50/50 + 0.1 M nBu₄NPF₆. Insert: corresponding AFM image of the scratched area.

SI-3 Current versus scan rate

Figure SI-3. A. Cyclic voltammograms recorded in 0.1 M nBu_4NPF_6 in DCM on a glassy carbon electrode previously functionalized by a monolayer of $C_{12}PDI$ (surface concentration of 2.3×10^{-10} mol.cm⁻²). Scan rates ranging from 10 mV.s⁻¹ to 1000 mV.s⁻¹. **B.** Maximum current recorded on the first reduction (PDI⁻ formation) as a function of the scan rate.

Figure SI-4. A. Time-dependent variation of the optical response recorded during a cyclic voltammetry measurement in a 10⁻³ M solution of aC₁₂PDI (DCM, nBu₄NPF₆ 0.1 M at 10 mV.s⁻¹) under thin layer conditions. **B.** Time-dependent variation of the optical response recorded during cyclic voltammetry measurement (in nBu₄NPF₆ 0.1 M/DCM at 10 mV.s⁻¹) on a gold electrode modified with a C₁₂PDI monolayer ($\Gamma_{PDI} = 1.9 \times 10^{-10}$ mol.cm⁻², deposited by chronoamperometry at 0 V for 5 min in a solution of dC₁₂PDI 10⁻³ M, nBu₄NPF₆ 0.1 M/DCM).

Figure SI-5. XPS core-level spectra recorded on GC plates functionalized by reduction at 0 V during 5 min in a mixture containing $dC_{12}PDI/dC_{12}Br$ (molar ratio of 40/60 and total concentration of $dC_{12}PDI+dC_{12}Br = 10^{-3}$ M in 0.1 M nBu₄NPF₆/DCM). **A.** Core-level spectrum and fitting curves for Cl 2p component. **B.** Core-level spectrum and fitting curves for Br 3d component.