Supporting Information

Elemental Pegging Effect in Locally Ordered Nanocrystallites of High-Entropy Oxide Enables Superior Lithium Storage

Huitao Leng^{1#}, Panpan Zhang^{1#}, Jiansheng Wu^{1#}, Taiding Xu¹, Hong Deng¹, Pan Yang^{1,2}, Shouyue Wang¹, Jingxia Qiu^{*1}, Zhenzhen Wu^{*2}, Sheng Li^{*1}

- School of Physical and Mathematical Sciences, Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
- Centre for Clean Environment and Energy, School of Environment and Science, Griffith University, Gold Coast 4222, Australia.

Scheme S1. Schematic diagram of the synthesis process of the HEO-MFCCZ

Fig. S1. XRD patterns of Fe₂O₃ and HEO-MFCC.

Fig. S2. SEM images of Fe₂O₃.

Table S1. ICP data for the HEO-MFCCZ and MEO-MFCC with the percentage of each element.

	Mn	Fe	Со	Cr	Zn	S _{config}
HEO-MFCCZ	23.4%	23%	21.6%	19.2%	12.8%	1.58R
MEO-MFCC	27.5%	30.2%	23.5%	18.8%		1.37R

Fig. S3. XPS of different elements in the HEO-MFCCZ: (a) Mn; (b) Fe; (c) Co; (d) Cr;

(e) Zn.

Fig. S4. Cyclic test of the HEO-MFCCZ electrode at a current density of 10 A g^{-1}

Fig. S5. Cyclic test of full battery at a current density of 1 A g⁻¹

Fig. S6. CV curves at different scan rates: (a) HEO-MFCCZ ; (b) Fe_2O_3 ; (c) The

comparison of b values of two materials.

Table S2. Comparison of the main parameters of the HEO-MFCCZ in this work with	th
other HEO-related working symmetric cells.	

Composition	Crystal	Rate capacity	Cycle performance	Electrolyte	Ref
	Structure		(cycles)		
(MgCoNiCuZn)O	Rock salt	180 mAh g ⁻¹ at 3 A g-1	590 mAh g ⁻¹	1 M LiPF6 in	1
			at 0.2 A g ⁻¹ (300)	EC:EMC =	
				1:1 (vol)	
(MgCoNiZn) _{0.65} Li _{0.35} O	Rock salt	$680 \mbox{ mAh } g^{1}$ at 1 A g^{1}	610 mAh g ⁻¹	1 M LiPF6 in	2
			at 1 A g ⁻¹ (100)	EC:DMC = 1:1	
				(vol)	
$(Mg_{0.2}Co_{0.2}Ni_{0.2}Cu_{0.2}Zn_{0.2})O$	Rock salt	206 mAh g $^{-1}$ at 2 A g $^{-1}$	390 mAh g ⁻¹	1 M LiPF ₆ in	3
			at 500 mA g ⁻¹ (300)	EC:DEC:DMC =	
				1:1:1 (vol)	
(LiMgCoNiCuZn)O	Rock salt	455 mAh g $^{-1}$ at 2 A g $^{-1}$	417 mAh g $^{-1}$ at 1 A g $^{-1}$ (300)	1 M LiPF ₆ in	4
				EC:DMC:EMC	

				=		
				1:1:1 (vol)		
(FeNiCrMnZn) ₃ O ₄	Spinel	382 mAh g ⁻¹ at 1 A g ⁻¹	387 mAh g ⁻¹	1M LiPF6 in	5	
			at 500 mA g ⁻¹ (185)	EC:DEC=1:1		
				(vol)		
(FeCoNiCrMnZnLi) ₃ O ₄	Spine	250 mAsh g-1 at 1 A g-	522 mAh g ⁻¹	1 M LiPF6 in	6	
		1	at 500 mA g ⁻¹ (100)	EC:DEC:EMC		
				=		
				1:1:1 (vol)		
(FeCoNiCrMn) ₃ O ₄	Spinel	423 mAh g ⁻¹ at 1 A g ⁻¹	220 mAh g ⁻¹	1 M LiPF6 in	7	
			at 5 A g ⁻¹ (5000)	EC:PC =		
				1:1 (vol)		
(CrNiMnFeCu) ₃ O ₄	Spinel	480 mAh g $^{-1}$ at 2 A g $^{-1}$	600 mAh g ⁻¹	1M LiPF6 in	8	
			at 500 mA g ⁻¹ (500)	EC:DEC=1:1		
				(vol) with		
				5%FEC		
$(Mn_{0.23}Fe_{0.23}Co_{0.22}Cr_{0.19}Zn_{0.13})_{3}O_{4}$	Spinel	590 mAh g ⁻¹ at 2 A g ⁻¹	620 at 2 A g ⁻¹ (550)	1M LiPF ₆ in	This work	
		and 680 mAh g ⁻¹ at 1 A		EC:DEC=1:1		
		\mathbf{g}^{-1}		(vol) with		
				5%FEC		

Table S3. Results of XPS data with the elemental valence changes of the HEO-MFCCZ

Results of the elemental valence changes of the HEO-MFCCZ										
	Fe		Mn		Со		Cr			
	Fe ⁰⁺	Fe ²⁺	Fe ³⁺	Mn ²⁺	Mn ³⁺	Co ²⁺	Co ³⁺	Cr ⁰⁺	Cr ³⁺	Cr ⁶⁺
0.01 V	10	60	30	80	20	47	53	73	27	0
3 V	9	51	39	69	31	23	67	56	44	0

Annotation

The crystal structures in this work (Fig. 1 and Scheme S1) were drawn through Vesta [9].

- A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S. S. Bhattacharya and H. Hahn, *Nature communications*, 2018, 9, 3400.
- Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding, X. Chen, Y. Song, L. Yang, H. Lin, S. Li and F. Pan, *Angew Chem Int Ed Engl*, 2021, 60, 4169-4174.
- C. Triolo, W. Xu, B. Petrovičovà, N. Pinna and S. Santangelo, Advanced Functional Materials, 2022, 32.
- 4. X. Liu, Y. Xing, K. Xu, H. Zhang, M. Gong, Q. Jia, S. Zhang and W. Lei, *Small*, 2022, **18**, 2200524.
- B. Xiao, G. Wu, T. Wang, Z. Wei, Y. Sui, B. Shen, J. Qi, F. Wei, Q. Meng, Y. Ren, X. Xue, J. Zheng, J. Mao and K. Dai, *Ceramics International*, 2021, 47, 33972-33977.
- C. Duan, K. Tian, X. Li, D. Wang, H. Sun, R. Zheng, Z. Wang and Y. Liu, *Ceramics International*, 2021, 47, 32025-32032.
- Z. Sun, Y. Zhao, C. Sun, Q. Ni, C. Wang and H. Jin, *Chemical Engineering Journal*, 2022, 431.
- J. Patra, T. X. Nguyen, C. C. Tsai, O. Clemens, J. Li, P. Pal, W. K. Chan, C. H. Lee, H. Y. T. Chen and J. M. Ting, *Advanced Functional Materials*, 2022, 32, 2110992.
- 9. K. Momma and F. Izumi, Journal of Applied Crystallography, 2011, 44, 1272–1276.