Impedance spectroscopy of Sb₂Se₃ photovoltaics consisting of (Sb₄Se₆)_n

nanoribbons under light illumination

Jaemin Park, Thomas P. Shalvey, Thomas Moehl, Kyoohee Woo, Jonathan D. Major, S. David

Tilley, Wooseok Yang*

Figure S2. 81 individual Sb₂Se₃ PV devices on a 5x5 cm² FTO glass.

Figure S3. Device performance statistics of the a) PCE, b) V_{OC} , c) J_{SC} , and d) FF with 81 cells of w-seed Sb₂Se₃ PVs. The horizontal middle lines represent the median, the box edges represent the standard deviations.

Figure S4. Nyquist plots of the w-seed Sb₂Se₃ PV at 0 V under 50 and 100% light intensities.

Figure S5. Voight circuit used to fit IS data of a) Figure 2b and b) Figure 2c,d.

Figure S6. Resistances from the high frequency semi-circle fitted with the Voight circuit in Figure

S5.

Figure S7. Mott-Schottky plots obtained by C_dep w-seed Sb₂Se₃ PVs under the 10, 50, and 100% light illumination.

Figure S8. a) J-V characteristics of champion w/o-seed Sb₂Se₃ PV. b) EQE spectra of a w/o-seed Sb₂Se₃ based PV.

Figure S9. Device performance statistics comparison between w-seed Sb_2Se_3 and w/o-seed Sb_2Se_3 of the a) PCE, b) V_{OC} , c) J_{SC} , and d) FF with 81 cells.

Figure S10. a) Top and b) cross-section SEM images of the w/o-seed Sb_2Se_3 film on TiO₂/FTO superstrate.

Figure S11. J-V curves of both Sb_2Se_3 PVs under dark conditions.

Supplementary Note 1.

Doping density can be calculated from the equation S1, where ε is the dielectric constant of the semiconductor, ε_0 is the permittivity of free space, A is the area, e is the elementary charge, N_d is the density of dopants, V is the applied potential, V_{fb} is the flat band potential, k_B is the Boltzmann constant, and T is the absolute temperature. Here, one-side junction is assumed due to the higher doping concentration of TiO₂.

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_o A e N_d} \left(V - V_{fb} - \frac{k_B T}{e} \right).$$
 S1)