Supplemental Material

To

Fabricating a type II heterojunction by growing lead-free perovskite Cs2AgBiBr⁶ in situ on graphite-like g-C3N⁴ nanosheets for enhanced photocatalytic CO² reduction

*Wei Xiong,a, ‡ Yuehong Dong,a, ‡ Aizhao Pan*a,b*

[‡] These authors contributed equally

^a State Key Laboratory of Clean and Efficient Coal-Fired Power Generation and Pollution Control/China Energy and Technology Research Institute Co., Ltd., Nanjing 210023, China ^b School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.

Corresponding Author

*Email: panaizhao2017032@xjtu.edu.cn.

Experimental Sections

Materials: Cesium Bromide (CsBr, 99.5%, AR grade), Silver bromide (AgBr, 99.9%, AR grade) and Bismuth (III) bromide (BiBr₃, \geq 98%, AR grade) were achieved from Shanghai Macklin Biochemical Co., Ltd (Shanghai, China). Dicyandiamide (≥99%, AR grade) was obtained from Shanghai Meryer Chemical Technology Co., Ltd (Shanghai, China). N, N-dimethylformamide (DMF, ≥99.5%, AR grade) and Dimethyl sulfoxide (DMSO, 98%, AR grade) were gained from Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). All the above chemicals were commercially available and used without further purification.

Synthesis of g-C₃</sub>N₄ <i>nanosheets: Synthesis of g-C₃N₄ *nanosheets* is similar to the previous reports.¹ Firstly, 2g dicyandiamide was dispersed in 50 mL DI water, and a homogeneous solution were obtained after ultrasonic treatment for 30 min. Then, the acquired solution was transferred into a 150 mL Teflon-lined stainless-steel autoclave. The autoclave then put into an oven and the temperature were setting at 200 ℃ for 4 hours. After natural cooling of autoclave, residuals were centrifuged and collected, followed by completely dry treatment. The dried white powder then putted into a muffle furnace, the temperature of muffle furnace was set at 550 ℃ and the heating time were setting for 2 hours. After above process, the $g - C_3N_4$ nanosheets were obtained.

Preparation of g-C3N4@Cs2AgBiBr⁶ nanocomposites: In-situ crystallization method ² was used to prepare g-C₃N₄@Cs₂AgBiBr₆ (CABB) composite photocatalysts. First, 25 mg g- C_3N_4 nanosheets were dispersed in 1 mL DMF under ultrasonic treatment (30 min), resulting in a uniform solution. The CABB precursor solution was prepared by dissolving CsBr, AgBr, and BiBr₃ (molar ratio=2: 1: 1) in a mixture of DMF and DMSO (total volume $= 1$ mL). Next, the CABB precursor solution was transferred into the g- C_3N_4 nanosheet suspensions and subjected to ultrasonic treatment for 30 min. Next, the mixed precursor containing $g - C_3N_4$ and CABB were added dropwise to a 25 mL toluene solution with vigorous stirring. After 5 min of stirring, the product was centrifuged and put in a vacuum dryer for 6 hours at 120 °C. g-C₃N₄@CABB nanocomposites with different CABB content were prepared by maintaining the following concentrations of CsBr in CABB: 0.014, 0.028, 0.056, and 0.112 mmol (CsBr: AgBr: BiBr₃ with mole ratio=2:1:1). The synthesized nanocomposites were labeled as $g - C_3N_4@CABB_1$, $g - C_3N_4@CABB_2$, $g - C_3N_4@CABB_3$ and $g - C_3N_4@CABB_3$ $C_3N_4@CABB_4$ respectively.

Characterizations: X-ray diffraction (XRD) patterns were obtained using a Bruker AXS D8 Discover X-ray diffractometer at a wavelength of Cu K (1.79) to characterize the material's crystal structure. X-ray photoelectron spectroscopy (XPS) measurements for elemental composition was processed on the air-exposed composites film surface and composites powder by an AXIS ULTRA (England, KRATOS ANALYTICAL Ltd.) using an Al mono Kα X-ray source (1486.6 eV) operated at 150 W. SEM images were acquired on a JEOL 7800F Field Emission Scanning Electron Microscope, with an EDS mapping system for elemental x-ray analysis. Ultraviolet and visible absorption (UV-vis) spectra were collected using a Cary 5000 UV-Vis-NIR spectrophotometer. A FEI G2F30 electron microscope operated at 200 kV with a Gatan SC 200 CCD camera equipped with an EDS was used for transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) and to determine the elemental composition. The steady-state photoluminescence spectra (PL) were collected using a F4600 Fluorescence spectrophotometer (Hitachi) under excitation at 405 nm. The time-resolved fluorescence measurements were detected with a FLS-1000 steady state and transient state fluorescence spectrometer (Edinburgh Instruments Ltd.).

Photocatalytic Experiments: Measurement on photoreduction $CO₂$ under visible-light illumination ($\lambda > 420$ nm, 80 mW cm⁻²) of g-C₃N₄, CABB and g-C₃N₄@CABB₃ were carried out in the solution of 99 mL ethyl acetate and 1 ml water, with 10% volume triethylamine as the sacrificial agent. ³ magnetic stirring and ultrasonication was used to disperse the pellet suspension. The suspension then transferred to a quartz glass reactor with a condensing water circulation system, and Ar gas was introduced at a flow rate of 20 sccm for 10 min to fully replace the air, followed by high purity $CO₂$ gas (5N) at a flow rate of 8 sccm. The light source was a 300 W xenon lamp with a 420 nm cutoff filter. The light intensity was 80 mW/cm² and the incident area was $\pi^*(4.5/2)^2$ cm². To ensure full reaction, the reaction was carried out under magnetic stirring at 500 rpm/min. Reaction products were analysis by Agilent GC7890 (FID & TCD).

Electrochemical measurements: electrochemical impedance spectroscopy (EIS) tests were carried out on an electrochemical workstation (CHENHUA760, China). A threeelectrode configuration cell was used with the assembled photoelectrodes $(g-C_3N_4,$

CABB and $g-C_3N_4@CABB_3$ composite samples on FTO glass) as the working electrode, the Pt mesh as counter electrode, and the Ag/AgCl (in 3 M KCl) as the reference electrode.

Figure S1. TEM image of g-C₃N₄ nanosheets.

.

Figure S2. Size distribution of CABB in g-C₃N₄@CABB₃.

Figure S3. HR-TEM image of CABB loaded on g-C3N⁴

Figure S4. Diffraction pattern of g-C₃N₄@CABB₃.

Figure S5. SEM image of g-C₃N₄@CABB₃.

Figure S6. SEM and element mapping image of g-C3N4@CABB3.

Figure S7. XPS spectra CABB.

Figure S8. Tauc plot of $g-C_3N_4@CABB_1$ (a), $g-C_3N_4@CABB_2$ (b) and g- $C_3N_4@CABB_4(c).$

Figure S9. normalized PL spectra of g-C₃N₄, CABB and g-C₃N₄@CABB_X (X=1, 2, 3)

and 4).

Figure S10. Recycling runs of g-C₃N₄@CABB₃ towards CO₂ reduction.

Figure S11. (a) XPS spectra of g-C₃N₄@CABB₃ after 3 times utilization. (b) XRD pattern of g-C₃N₄@CABB₃ after 3 times utilization.

REFERENCES

- 1. M. Ou, W. Tu, S. Yin, W. Xing, S. Wu, H. Wang, S. Wan, Q. Zhong and R. Xu, *Angewandte Chemie International Edition*, 2018, **57**, 13570-13574.
- 2. H.H. Zhang, Z.C. Zhou, Y.J. Dong, L. Zhang, H.Y. Chen and D.B. Kuang, *Solar RRL*, 2021, **5**, 2100559.
- 3. Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang, Q. Li and D. Xu, *Applied Catalysis B: Environmental*, 2021, **282**, 119570.
- 4. A. Pan, X. Ma, S. Huang, Y. Wu, M. Jia, Y. Shi, Y. Liu, P. Wangyang, L. He and Y. Liu, *The Journal of Physical Chemistry Letters*, 2019, **10**, 6590-6597.
- 5. T. Zhao, D. Li, Y. Zhang and G. Chen, *Journal of Colloid and Interface Science*, 2022, **628**, 966-974.
- 6. R. Cheng, H. Jin, M. B. J. Roeffaers, J. Hofkens and E. Debroye, *ACS Omega*, 2020, **5**, 24495- 24503.
- 7. S. You, S. Guo, X. Zhao, M. Sun, C. Sun, Z. Su and X. Wang, *Dalton Transactions*, 2019, **48**, 14115-14121.