Electronic Supplementary Information for

Nanoclusters with Specific DNA-Overhangs: Modifying Configurability, Engineering Contrary Logic Pairs and Parity Generator/Checker for Error Detection

Mohamed Nabeel Mattath,^{a,b} Haibin Zhang,^c Debasis Ghosh,^b Thimmaiah Govindaraju,^{b*} and Shuo Shi^{a*}

^aSchool of Chemical Science and Engineering, Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, PR China. Email: <u>shishuo@tongji.edu.cn</u>

^bBioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India. Email: tgraju@jncasr.ac.in

^cEndoscopy Center, Department of Gastroenterology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, 200092.

Sl. No.	Content	Page No.
Figures		
Fig. S1	(A) SEM image and (B) SEM-EDS elemental mapping images of T-Au/Ag NCs.	S3
Fig. S2	(A) Temperature-dependent solid-state emission intensity of T-Au/Ag NCs. (B) Temperature dependence of the excited-state lifetimes. (C) Difference in emission intensity of T-Au/Ag NCs.	S3
Fig. S3	(A) Time dependent emission spectra of T-Au/Ag NCs and M-Au/Ag NCs. (B)Time dependent normalized PL spectra of T-Au/Ag NCs under UV light (365 nm).	S4
Fig. S4	(A) Normalized PL spectra of T-Au/Ag NCs under different pH windows. (B) Normalized PL spectra of T-Au/Ag NCs as control in the presence of different metal ions of 30 μ M.	S4
Fig. S5	(A) Absorption and emission of TO. (B) Different excitation measurement from450 to 510 nm of blank TO.	S4
Fig. S6	(A) PL spectra and (B) normalized PL intensities of TO incorporated C-DNA NCs upon increasing the concentration.	S5
Fig. S7	Column representation of TO incorporated C-DNA NCs and T-Au/Ag NCs in the presence of Hg ^{II} .	S5
Fig. S8	The study of fluorescence spectra in the order of addition in the preincubation of the M-Au/Ag NCs	S5
Fig. S9	The study of fluorescence spectra in the order of addition in the preincubation of the DNA-Au/Ag NCs	S6
Tables		
Table S1.	Truth tables of different types of CLPs, such as (A) YES^NOT, (B) OR^NOR and (C) INH^IMP.	S6
Table S2.	Summary of phosphorescence decay profiles of T-Au/Ag NCs in Solid-state.	S6
Table S3.	Summary of phosphorescence decay of T-Au/Ag NCs and various Hg ^{II} concentration in solution (citrate buffer).	S7
Table S4.	Truth table of the 2-bit even/odd pG	S7
Table S5.	A molecular perspective representation of chemical structures illustrating interactions leading to different outputs	S7
Table S6.	Comparison of the proposed method in error detection using DNA computing with the previously reported methods	S8
References		S8

Figures and tables:

Fig. S1 (A) SEM image (scale: 100 nm)and (B) SEM-EDS elemental mapping images of Au and Ag in T-Au/Ag NCs (scale: 250 nm).

Fig. S2 (A) Temperature-dependent solid-state emission intensity of T-Au/Ag NCs at 300 K and 77 K upon excitation at 275 nm. (B) Temperature dependence of the excited-state lifetimes of T-Au/Ag NCs at 300 K and 77 K, IRF: instrument response function. (C) Lifetime decay plot of T-Au/Ag NCs and sequential addition of Hg^{II} in increasing concentration. (D) Difference in emission intensity of T-Au/Ag NCs upon addition Hg^{II} with increasing concentration (10 - 50 μ M).

Fig. S3 (A) Time dependent emission spectra of T-Au/Ag NCs and M-Au/Ag NCs. (B) Time dependent normalized PL spectra of T-Au/Ag NCs under UV light (365 nm).

Fig. S4 (A) Normalized PL spectra of T-Au/Ag NCs under different pH windows. (B) Normalized PL spectra of T-Au/Ag NCs as control in the presence of different metal ions of 30μ M.

Fig. S5 (A) Absorption and emission of TO. (B) Different excitation measurement from 450 to 510 nm of blank TO.

Fig. S6 (A) PL spectra and (B) normalized PL intensities of TO incorporated C-DNA NCs upon increasing the concentration.

Fig. S7 Column representation PL intensity of TO incorporated C-DNA NCs and T-Au/Ag NCs in the presence of Hg^{II}.

Fig. S8 The study of PL spectra in the order of addition in the preincubation of the M-Au/Ag NCs (when P = 1) with different analytes in different entries (E3, E4, E5, E6, E7, E8) for even pG/pC. The "+" (plus icon in red color) in Y-axis represents those which analytes are undergo for 10 min preincubation.

Fig. S9 The study of PL spectra in the order of addition in the preincubation of the DNA-Au/Ag NCs (when P = 1) with different analytes in different entries (E4, E6, E7, E8) for odd pG/pC. The "+" (plus icon in red color) in Y-axis represents those which analytes are undergo for 10 min preincubation.

Table S1. Truth tables of different types of CLPs, such as (A) YES^NOT, (B) OR^NOR and (C) INH^IMP.

				В					
Inputs	Outputs (VESANOT)			- Ing	outs	Outputs	Outputs (OR^NOR)	
INI	M An/An NCa	T A/	An NCa		IN1	IN2	M-Au/Ag NC	Cs T-Au/Ag NCs	
INI	M-Au/Ag NCs	1-Au/.	Agines		0	0	0	1	
0	0		1		0	1	1	0	
1	1		0		0	1	1	0	
					1	0	1	0	
					1	1	1	0	
	С								
	C	Inputs		Ou	Outputs (INH^IMP)				
		IN3	IN4	M-Au/A	g NCs	T-Au/A	ag NCs		
		0	0	0		1	l.		
		0	1	0		()		
		1	0	1		1	1		
		1	1	0		1	L		

Table S2. Summary of phosphorescence decay profiles of T-Au/Ag NCs in Solid-state.

	λ _{exc.} (nm)	$\lambda_{ m monitored}$ (nm)	t ₁ (μs)	t ₂ (μs)	t ₃ (μs)	$<\!\!t_{ m avg.}\!\!>$ (µs)
T-DNA NCs at 300 K	275	530	2.6 (40 %)	9.0 (59 %)	-	6.3
T-DNA NCs at 77 K	275	450	9.01 (29 %)	38.1 (47 %)	165.8 (23 %)	58.6

	$\lambda_{exc.}$ (nm)	$\lambda_{collected}$ (nm)	t ₁ (ms)	t ₂ (ms)	<t<sub>avg.> (ms)</t<sub>
T-DNA NCs	320	535	2.5 (51 %)	9.0 (48 %)	5.6
T-DNA NCs +Hg ^{II} (10 mM)	320	535	2.4 (44 %)	8.9 (55 %)	5.9
T-DNA NCs +Hg ^{II} (20 mM)	320	535	2.6 (43 %)	9.4 (56 %)	6.2
T-DNA NCs +Hg ^{II} (30 mM)	320	535	2.8 (42 %)	9.8 (57 %)	6.7
T-DNA NCs +Hg ^{II} (40 mM)	320	535	2.9 (42 %)	9.9 (57 %)	6.8
T-DNA NCs +Hg ^{II} (50 mM)	320	535	2.8 (39 %)	9.7 (60 %)	6.9

Table S3. Summary of phosphorescence decay of T-Au/Ag NCs and various Hg^{II} concentration in solution (citrate buffer).

Table S4. Truth table of the 2-bit even/odd pG (D1' = Cys, D2' = GSH, ^a number of 1's in the D1'D2'P' string for even pG; D1" = Hg^{II}, D2" = Cys, ^a number of 1's in the D1"D2"P" string for odd pG)

	Entur	Inp	outs	M-Au/Ag NCs	(Even pG)	DNA-Au/Ag NCs	Cs (Odd pG) Σ ^a 1; odd 1; odd		
	Entry	D1	D2	Outputs(P')	$\sum a$	Outputs(P")	$\sum a$		
	1	0	0	0	0; even	1	1; odd		
	2	0	1	1	2; even	0	1; odd		
	3	1	0	1	2; even	0	1; odd		
	4	1	1	0	2; even	1	3; odd		

Table S5. A molecular perspective representation of chemical structures illustrating all possible interactions leading to different outputs.

Table S6. Comparison of the proposed method in error detection using DNA computing with the previously reported methods.

Platform	No. of DN	A utilized in th	ne study	Asson	Evon/Odd	Rof	
i latioi ili	Platform Input entry		Total	Assay	Lven/Ouu	KU	
TP/NMM/TMB	1	3	4	Fluorescence, Colorimetric	Even	1	
Polydopamine nanosphere	1	3	4	Fluorescence	Even	2	
SH-DNA, MCH	1	3	4	Electrochemical	Even	3	
H-AgNCs, IN2/Xaux	3	3	6	Fluorescence	Even/Odd	4	
GCNNs, Ru(phen) ₃ ²⁺ , GCE	4	3	7	ECL-RET	Even/Odd	5	
H1, H2, H3, Exo III, MB, IN1/AX1	5	3	8	Electrochemical	Even/Odd	6	
M-Au/Ag NCs, T-DNA NCs	1	0	1	Photoluminescence	Even/Odd	Present work	

References

- 1. D. Fan, E. Wang and S. Dong, *Chem. Sci.*, 2017, **8**, 1888-1895.
- 2. D. Fan, E. Wang and S. Dong, ACS Appl. Mater. Interfaces, 2017, 9, 1322-1330.
- 3. D. Fan, Y. Fan, E. Wang and S. Dong, *Chem. Sci.*, 2018, 9, 6981-6987.
- 4. M. Lv, W. Zhou, D. Fan, Y. Guo, X. Zhu, J. Ren and E. Wang, *Adv. Mater.*, 2020, **32**, 1908480.
- 5. L. Zhu, L. Yu, T. Meng, Y. Peng and X. Yang, *Small*, 2021, **17**, 2102881.
- 6. L. Zhu, L. Yu and X. Yang, ACS Appl. Mater. Interfaces, 2021, 13, 42250-42257.