Supporting information

Ordered and carbon-doped porous polymeric graphitic carbon nitride nanosheets toward enhanced visible light absorption and efficient photocatalytic H₂ evolution

Rama Krishna Chava*, Misook Kang**

Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.

Corresponding Author's Address:

Dr. Rama Krishna Chava (Email: drcrkphysics@hotmail.com, rama@ynu.ac.kr)

Prof. Misook Kang (Email: mskang@ynu.ac.kr)

Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-

Ro, Gyeongsan-38541, Gyeongbuk, Republic of Korea.

Figure S1. The XPS survey scan spectra of BCN and CNM samples.

Sample	C-1s	N-1s	C/N
BCN	41.61	56.29	0.739
CNM-1	42.35	54.61	0.775
CNM-2	42.18	55.04	0.766
CNM-3	42.40	54.76	0.774
CNM-4	42.76	54.23	0.788

Table S1. Atomic ratios of C and N elements in the prepared GCN samples

Figure S2. The XPS survey scan spectra of O-1s element in CNM-3 sample.

Figure S3. FE-SEM images of BCN and CNM photocatalyst samples

Figure S4. STEM-EDX spectral analysis of CNM-3 sample.

Figure S5. N2 adsorption-desorption isotherms of BCN and CNM samples.

Table S2. The comparison of photocatalytic H_2 evolution activity of g-C₃N₄ sample (CNM-3) derived from malonic acid treated melamine precursors with some previously reported g-C₃N₄-photocatalysts.

Photocatalyst	H ₂ evolution Activity	Light source Refe	rence
3D g-C ₃ N ₄	29 µmol/h	λ > 420 nm 300 W Xe lamp	1
Holey <i>g</i> -C ₃ N ₄	82.9 µmol/h	λ > 420 nm 300 W Xe lamp	2
Porous g-C ₃ N ₄	316.7 µmol/h	λ > 400 nm 300 W Xe lamp	3
Porous g-C ₃ N ₄	1.8 μmol/h	λ > 420 nm 300 W Xe lamp	4
g-C ₃ N ₄ nanosheets	170.5 μmol/h	λ > 400 nm 300 W Xe lamp	5
Carbon-rich g-C ₃ N ₄	39.6 μmol/h 8.6 μmol/h	$\lambda > 400 \text{ nm}$ $\lambda > 420 \text{ nm}$; 300 W Xe lamp	6
C-self doped g-C ₃ N ₄	25.3 μmol/h	λ > 400 nm 300 W Xe lamp	7
C-rich g-C ₃ N ₄	125.1µmol/h/g	λ > 420 nm 300 W Xe lamp	8
Porous crystalline g-C ₃ N	4 1010 μmol/h/g	$\lambda > 420 \text{ nm}$ 4 LEDs	9

		150 W Xe lamp	
Porous C-rich g-C ₃ N ₄	663.6 μmol/h/g	$\lambda > 420 \text{ nm}$	This work
		300 W Xe lamp	
g-C ₃ N ₄ with cyanamide groups	8 μmol/h/g	$\lambda > 400 \text{ nm}$	20
		300 W Xe lamp	
In-plane ordered g-C ₃ N ₄	420 μmol/h	$\lambda > 420 \text{ nm}$	19
		300 W Xe lamp	
g-C ₃ N ₄ with N-vacancies	652 μmol/h/g	$\lambda > 420 \text{ nm}$	18
		300 W Xe lamp	
O-doped g-C ₃ N ₄	1748 µmol/h/g	$\lambda > 400 \text{ nm}$	17
		4 LEDs	
N-rich g-C ₃ N ₄	15.5 μmol/h	$\lambda > 420 \text{ nm}$	16
		300 W Xe lamp	
H-bond broken g-C ₃ N ₄	580 μmol/h/g	$\lambda > 440 \text{ nm}$	15
		300 W Xe lamp	
Defect- g-C ₃ N ₄	504 µmol/h/g	$\lambda > 420 \text{ nm}$	14
		300 W Xe lamp	
C-rich g-C ₃ N ₄	551.5 µmol/h	$\lambda > 400 \text{ nm}$	13
Crystalline g-C ₃ N ₄	150 μmol/h	50 W	12
	150 14	300 W Xe lamp	10
Heptazine bridged g-C ₃ N ₄	372 μmol/h	$\lambda > 400 \text{ nm}$	11
		300 W Xe lamp	
Amine bridged g-C ₃ N ₄	157 μmol/h/g	$\lambda > 420 \text{ nm}$	10

- Q. H. Liang, Z. Li, X. L. Yu, Z. H. Huang, F. Y. Kang, Q. H. Yang, Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution, Adv. Mater. 2015, 27, 4634-4639.
- (2) Q. H. Liang, Z. Li, Z. H. Huang, F. Y. Kang, Q. H. Yang, Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production, Adv. Funct. Mater. 2015, 25, 6885-6892.
- (3) P. J. Yang, J. H. Zhao, W. Qiao, L. Li, Z. P. Zhu, Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride, Nanoscale 2015, 7, 18887-18890.
- (4) Q. Gu, Y. S. Liao, L. S. Yin, J. L. Long, X. X. Wang, C. Xue, Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability, Appl. Catal. B 2015, 165, 503-510.
- (5) P. Niu, L. L. Zhang, G. Liu, H. M. Cheng, Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities, Adv. Funct. Mater. 2012, 22, 4763-4770
- (6) Li, Y. F.; Yang, M.; Xing, Y.; Liu, X. C.; Yang, Y.; Wang, X.; Song, S. Y. Preparation of Carbon-Rich g-C₃N₄ Nanosheets with Enhanced Visible Light Utilization for Efficient Photocatalytic Hydrogen Production. Small 13, 2017, 1701552.
- (7) Guohui Dong, Kun Zhao and Lizhi Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C₃N₄, Chem. Commun., 2012, 48, 6178–6180.
- (8) Zhou Chen, Ting-Ting Fan, Xiang Yu, Qiu-Ling Wu, Qiu-Hui Zhu, Li-Zhong Zhang, Jian-Hui Li, Wei-Ping Fang and Xiao-Dong Yi, Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution, J. Mater. Chem. A, 2018, 6, 15310–15319.
- Xinhe Wu, Haiqin Ma, Wei Zhong, Jiajie Fan, Huogen Yu, Porous crystalline g-C3N4: Bifunctional NaHCO3 template-mediated synthesis and improved photocatalytic H2evolution rate, Applied Catalysis B: Environmental 271 (2020) 118899.
- (10) Dawoon Jang, Seungjoo Choi, Nam Hee Kwon, Kyung Yeon Jang, Suyeon Lee, Tae-Woo Lee, Seong-Ju Hwang, Hyungjun Kim, Jeongho Kim, Sungjin Park, Waterassisted formation of amine-bridged carbon nitride: A structural insight into the photocatalytic performance for H₂ evolution under visible light, Applied Catalysis B: Environmental 310 (2022) 121313.
- (11) Dong Liu, Shengtao Chen, Yuexing Zhang, Renjie Li, Tianyou Peng, Modulating the bridging units of carbon nitride for highly efficient charge separation and visible-light-

responsive photocatalytic H_2 evolution, Applied Catalysis B: Environmental 333 (2023) 122805.

- (12) Guigang Zhang, Guosheng Li, Zhi-An Lan, Lihua Lin, Aleksandr Savateev, Tobias Heil, Spiros Zafeiratos, Xinchen Wang, and Markus Antonietti, Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity, Angew. Chem. Int. Ed. 2017, 56, 13445–13449.
- (13) Shuo Zhao, Yuepeng Liu, Yanyun Wang, Liying Xie, Jiasheng Fang, Yiwei Zhang, Yuming Zhou, and Shuping Zhuo, C-Rich Graphitic Carbon Nitride with Cross Pore Channels: A VisibleLight-Driven Photocatalyst for Water Splitting, ACS Appl. Energy Mater. 2021, 4, 1784–1792.
- (14) Huihui Deng, Yushuai Jia, Wenquan Wang, Shengliang Zhong, Renqin Hao, Linjie Fan, and Xin Liu, Defect and Crystallinity-Mediated Charge Separation in Carbon Nitride for Synergistically Boosted Solar-Driven Hydrogen Evolution, ACS Sustainable Chem. Eng. 2023, 11, 13736–13746.
- (15) Yuyang Kang, Yongqiang Yang, Li-Chang Yin, Xiangdong Kang, Lianzhou Wang, Gang Liu and Hui-Ming Cheng, Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis, Adv. Mater. 2016, 28, 6471–6477.
- (16) Xinhe Wu, Duoduo Gao, Ping Wang, Huogen Yu, Jiaguo Yu, NH₄Cl-induced lowtemperature formation of nitrogen-rich g-C₃N₄ nanosheets with improved photocatalytic hydrogen evolution, Carbon 2019, 153, 757-766.
- (17) Chao Wang, Huiqing Fan, Xiaohu Ren, Jiangwei Ma, Jiawen Fang, and Weijia Wang, Hydrothermally Induced Oxygen Doping of Graphitic Carbon Nitride with a Highly Ordered Architecture and Enhanced Photocatalytic Activity, ChemSusChem 2018, 11, 700–708.
- (18) Zhengdong Xu, Yang Chen, Binghao Wang, Yu Ran, Junbo Zhong, Minjiao Li, Highly selective photocatalytic CO₂ reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C₃N₄, Journal of Colloid and Interface Science 651 (2023) 645–658.
- (19) Guixia Zhao, Guigao Liu, Hong Pang, Huimin Liu, Huabin Zhang, Kun Chang, Xianguang Meng, Xiaojun Wang, and Jinhua Ye, Improved Photocatalytic H2 Evolution over G-Carbon Nitride with Enhanced In-Plane Ordering, Small, 2016, 12, 6160-6166.

(20) Vincent Wing-hei Lau, Igor Moudrakovski, Tiago Botari, Simon Weinberger, Maria B. Mesch, Viola Duppel, Ju[¬]rgen Senker, Volker Blum, Bettina V. Lotsch, Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites, Nat. Commun. 2016, 7, 12165.