Supporting Information to

Internal Structure of Gd-doped polymer entrapped-perfluorocarbon nanoparticles affect ¹⁹F relaxation

Alvja Mali^{1,2, ‡}, Margot Verbeelen^{3,‡}, Paul B. White⁴, Alexander H.J. Staal³, N. Koen van Riessen^{1,3}, Cyril Cadiou⁵, Françoise Chuburu⁵, Olga Koshkina^{3, 7 ‡, *}, Mangala Srinivas^{1, 6,‡,*}.

¹Department of Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.

²Leiden University Medical Center, Leiden, The Netherlands.

³ Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

⁴ Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands,

⁵ Université de Reims Champagne Ardenne, CNRS, ICMR UMR 7312, Reims, France

⁶ Sustainable Polymer Chemistry Group, Department of Molecules and Materials, Mesa+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands

⁷ Cenya Imaging B.V., Amsterdam, The Netherlands

Table of Content

1	Characterization of nanoparticles and nanocapsules by dynamic light scattering (DLS)	2
2	Characterization of nanoparticles and nanocapsules by cryogenic SEM	3
3	Determination of Gd- and PFCE-content	4
4	Cell Viability Testing	5
5	Measurements of the Relaxation Rates by ¹⁹ F NMR spectroscopy	5
6	NMR Spectra of nanoparticles and nanocapsules with different gadolinium content	7
7	Quantification of MRI signal	8
8	Relaxation rates/times measurement of nanoparticles in acidic environment	8
9	¹⁹ F NMR Spectra of multicore nanoparticles when dissolved in basic environment	9
10	¹ H NMR Spectra of multicore nanoparticles loaded with Gd_01	9

1 Characterization of nanoparticles and nanocapsules by dynamic light scattering (DLS)

Table S1. Hydrodynamic diameter Dh and polydispersity index PDI of multicore nanoparticles determined by DLS.

	Gd_01		Gd	_02
Gd added [mg]	D _h [nm]	PDI	D _h [nm]	PDI
0	196	0.1	-	-
0.2	205	0.1	205	0.2
0.4	298	0.1	194	0.1
0.7	186	0.06	178	0.1
0.9	185	0.05	196	0.07
1.1	225	0.1	263	0.2
2.2	208	0.1	207	0.1
Prohance, 140 mg	180	0.05		

Table S2. Hydrodynamic diameter D_h and polydispersity index PDI of core-shell capsules determined by DLS.

	Gd	_01	Gd	_02
Gd added [mg]	D _h [nm]	PDI	D _h [nm]	PDI
0	145	0.07	-	-
0.2	0.2 161 0.1		160	0.05
1.1	189	0.2	159	0.2
2.2	166	0.03	178	0.2
Prohance,	155	0.07	-	-
140 mg				

2 Characterization of nanoparticles and nanocapsules by cryogenic SEM

Figure S1. Cryogenic Scanning Electron Microscopy (cryoSEM) micrograph of multicore nanoparticles that were prepared using 1.1 mg Gd_01. c=10 mg mL-1, scale bar 1 µm.

Figure S2. Cryogenic Scanning Electron Microscopy (cryoSEM) micrograph of nanocapsules that were prepared using 1.1 mg Gd_01. c=10 mg mL⁻¹, scale bar 1 μ m.

3 Determination of Gd- and PFCE-content

	Gd-content [µo	g(Gd) mg(NP) ⁻¹]	PFCE-con	FCE-content [wt%]	
Gd added [mg]	Gd_01	Gd_02	Gd_01	Gd_02	
0	0.0	009	2	22	
0.2	0.72	1.2	29	16	
0.4	0.97	1.6	15	13	
0.7	1.8	2.9	11	11	
0.9	2.4	3.7	11	9	
1.1	2.9	5.0	8	1	
2.2	7.2	12	3	2	
Prohance, 140 mg	0.	99	1	9	

Table S3. Multicore nanoparticles: Determination of Gd-content by ICP MS and PFCE-content by ¹⁹F NMR spectroscopy (see Figure 2).

Table S4. Core-shell nanocapsules: Determination of Gd-content by ICP MS and PFCE-content by ¹⁹F NMR spectroscopy (see Figure 2).

	Gd-content [µo	g(Gd) mg(NP) ⁻¹]	PFCE-con	tent [wt%]	
Gd added	Gd_01	Gd_02	Gd_01	Gd_02	
[mg]					
0	0.0	003	12		
0.2	0.97	1.9	32	34	
1.1	6.8	9.2	28	33	
2.2	11	8.8	30	24	
Prohance, 0.		11	25		
140 mg					

Figure S3. Viability of nanoparticles in RAW macrophages. Cells were incubated with the nanoparticles for 24 h. The cell viability was assessed by the MTT assay (absorbance at 590 nm). All labeled cells are viable and display higher absorbance than a positive control (live cells without nanoparticles. The values represent mean \pm SD (n=2).

5 Measurements of the Relaxation Rates by ¹⁹F NMR spectroscopy

Gd_01 [µg(Gd) mg(NP) ⁻¹]	T₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R₂ [s⁻¹]
0.72	0.91	1.1	0.63	1.6
0.97	0.75	1.3	0.065	16
1.8	0.59	1.7	0.017	59
2.4	0.60	1.7	0.035	29
2.9	0.68	1.5	0.0061	164
7.2	0.26	3.9	0.0044	230
Prohance 0.99	0.90	1.1	0.65	1.5
No Gd; 0.0009	0.93	1.1	0.69	1.4

Table S5. Relaxation times and rates of multicore nanoparticles with Gd_01 (see Figure 3).

Gd_02 [µg(Gd) mg(NP) ⁻¹]	T₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R₂ [s⁻¹]
1.2	0.91	1.1	0.62	1.6
1.6	0.67	1.5	0.030	33
2.9	0.38	2.6	0.0041	244
3.7	0.40	2.5	0.0060	167
5.0	0.40	2.5	0.0034	298
12	0.12	8.5	0.0025	408
Prohance 0.99	0.90	1.1	0.65	1.5
No Gd; 0.0009	0.93	1.1	0.69	1.4

Gd_01 [µg(Gd) mg(NP) ⁻¹]	T₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]
0.97	0.84	1.2	0.20	5.0
6.8	0.84	1.2	0.074	13
11	0.80	1.2	0.049	20
Prohance 0.11	0.90	1.1	0.47	2.1
No Gd; 0.003	0.86	1.2	0.37	2.7

Table S7. Relaxation times and rates of core-shell nanocapsules with Gd_01 (see Figure 3).

Table S8. Relaxation times and rates of core-shell nanocapsules with Gd_02 (see Figure 3).

Gd_02 [μg(Gd) mg(NP) ⁻¹] Τ ₁ [s]		R₁ [s⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]	
1.9	o.86	1.2	0.12	8.2	
9.2	0.82	1.2	0.047	21	
8.8	0.83	1.2	0.030	34	
Prohance 0.11	0.90	1.1	0.47	2.1	
No Gd; 0.003	0.86	1.2	0.37	2.7	

6 NMR Spectra of nanoparticles and nanocapsules with different gadolinium content

Figure S4. Stacked ¹⁹F NMR spectra of PFCE-loaded nanoparticles: (a) Gd-free h (b) Prohance, (c) 5 mg BK21 or (d) 10 mg BK21.

Figure S5. Stacked ¹⁹F spectra of PFCE-loaded nanocapsules: (a) Gd-free, (b) Prohance, and (c) 10 mg BK21. Nanocapsules in D_2O , c = 10 mg mL⁻¹, 378 MHz.

7 Quantification of MRI signal

Table S9. Signal-to-Noise ratio (SNR) of ¹⁹F and ¹H MRI signals, 11.7 T (see Figure 4).

Gd [µg(Gd) mg(NP)-1]	PFCE [wt%]	¹⁹ F SNR	¹ H SNR
Water-ctrl: 0	0	1.0	16
No-Gd NPs: 0	27	7.4	17
0.7	29	8.4	29
1.0	15	2.9	33
1.8	11	1.0	38
2.4	11	1.5	49

8 Relaxation rates/times measurement of nanoparticles in acidic environment Table S10. Relaxation times and rates of multicore nanoparticles loaded with Gd_01 at different pH (see Figure 5).

	Gd_01					No	Gd	
рН	T ₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]	T ₁ [s]	R ₁ [s ⁻¹]	T ₂ [s]	R ₂ [S ⁻¹]
2	0.79	1.26	0.25	4	0.81	1.23	0.4	2.5
3	0.73	1.37	0.16	6.25	0.80	1.25	0.4	2.5
5.5	0.68	1.47	0.04	27.8	0.80	1.25	0.45	2

7	0.65	1.54	0.017	58.8	0.82	1.23	0.45	2.2
---	------	------	-------	------	------	------	------	-----

Table S11. Relaxation times and rates of multicore nanoparticles loaded with Gd_02 at different pH.

		Gd	_02	No Gd				
рН	T₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]	T ₁ [s]	R ₁ [s ⁻¹]	T ₂ [s]	R ₂ [S ⁻¹]
2	0.77	1.3	0.3	3.3	0.81	1.23	0.4	2.5
3	0.77	1.3	0.22	4.5	0.80	1.25	0.4	2.5
5.5	0.53	1.88	0.017	58.8	0.80	1.25	0.5	2
7	0.57	1.75	0.019	52.6	0.81	1.23	0.45	2.2

Table S12.	Relaxation	times a	nd rates	of	core-shell	nanocapsules	loaded	with	Gd_	01	at	different
pH.						-				-		

		Gd	_01	No Gd				
рН	T₁ [s]	R ₁ [s ⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]	T ₁ [s]	R ₁ [s ⁻¹]	T ₂ [s]	R ₂ [S ⁻¹]
2	0.74	1.35	0.062	16.13	0.78	1.28	0.28	3.6
3	0.74	1.35	0.063	15.87	0.79	1.26	0.28	3.6
5.5	0.73	1.37	0.061	16.39	0.78	1.28	0.29	3.4
7	0.73	1.37	0.061	16.39	0.77	1.3	0.27	3.7

Table S13. Relaxation times and rates of core-shell nanocapsules loaded with Gd_02 at different pH.

		Gd_	_02	No Gd				
рН	T₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]	T₁ [s]	R₁ [s⁻¹]	T ₂ [s]	R ₂ [s ⁻¹]
2	0.73	1.37	0.062	16.13	0.78	1.28	0.28	3.6
3	0.74	1.35	0.061	16.39	0.79	1.26	0.28	3.6
5.5	0.72	1.39	0.061	16.39	0.78	1.28	0.29	3.4
7	0.72	1.39	0.062	16.13	0.77	1.3	0.27	3.7

9 ¹⁹F NMR Spectra of multicore nanoparticles when dissolved in basic environment

Figure S6. Stacked ¹⁹F spectra of gadolinium-loaded and Gd_free multicore nanoparticles when dissolved in: (b and d) neutral (pH 7), and (a and c) basic environment (pH 14). Multicore Nanoparticles: $c = 10 \text{ mg mL}^{-1}$, 378 MHz.

10 ¹H NMR Spectra of multicore nanoparticles loaded with Gd_01

9

Figure S7. ¹H spectral line profile of multicore nanoparticles loaded with Gd_02 at pH 7 and 3, immediately after solubilization and five days after (a) to study the stability in acidic environment. Multicore nanoaprticles in in D2O (pH 7) and acidic solvent (pH 3), 700 MHz, $c = 10 \text{ mg mL}^{-1}$.