Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Wafer-scale Patterning of High-resolution Quantum Dot Films with a Thickness over

10 µm for Improved Color Conversion

Shenghan Zou, Yuzhi Li, and Zheng Gong*

Fig. S1 Schematic of fabrication process of patterned intaglio Si masters.

Fig. S2 3D LCM images and corresponding profile curves of fabricated (a) Si-14/10, (b) Si-15/20, (c) Si-27/30, and (d) Si-28/40 templates.

Fig. S3 3D LCM pictures of Si-14/10 template and resulted PQD@SPS replica (from left to right), and their corresponding profile curves collected in five random areas.

Fig. S4 (a) Magnified SEM images of the resulted PQD@PS replica fabricated by Si-14/10 template, and further magnified (b-d) SEM images of different irregular fracture surfaces.

Fig. S5 3D LCM pictures of five random areas in resulted PQD@PS replica fabricated by Si-14/10 template, and their corresponding profile curves.

Fig. S6 Stress-strain curves of (a) PQD@SPS film and (b) PQD@PS film, the elastic regions are marked by the red boxes.

Fig. S7 The viscosity-shear rate curves of synthesized PQD@SPS ink-A and ink-B.

Fig. S8 3D LCM pictures of ink-B fabricated PQD@SPS pillar arrays in five random areas based on Si-27/30 template, and their corresponding profile curves.

Fig. S9 Aspect ratios of fabricated PQD@SPS replicas with an average pixel size of (a) 10 μ m, (b) 20 μ m, (c) 30 μ m, and (d) 40 μ m.

Fig. S10 (a) Relative PL intensity and (b) emission wavelength of the samples against water treatment.

Fig. S11 (a) Schematic illustration of sequentially integrating two etched greenemitting GQD@SPS pillars side by side to one clean substrate. (b) PL emission images of fabricated Guangdong Academy of Sciences macroscopic logo on a large substrate during the integration process. (c) PL emission images of fabricated patterns with different sizes and shapes on a same substrate during the integration process.

Fig. S12 PL emission spectra of (a) GQD@SPS and (a) RQD@SPS films with different thicknesses on top of the blue micro-LED device.

references	Patterning method	Thickness of QD patterns		
This work	RM-PE-TP technique	19.74 μm		
1	Direct in situ photolithography	10.4 μm		
2	Photo-patterning method based on a	4.1 μm		
	light-driven ligand crosslinker			
3	Photolithography of QD/siloxane ink	10 µm		
	containing secondary thiol monomer			
4	Direct patterning via thermally	13.2 μm		
	activated ligand chemistry			
5	Cavity filling of prepatterned quartz	7 μm		
	substrates			
6	Inkjet Printing into prepatterned banks	9.8 μm		

Table S1 Thickness comparison of recently reported QD patterns fabricated by variouspatterning methods.

PQD@SPS film								
Equation	y = a + b*x							
Weight	No Weighting							
Residual Sum of Squares	0.00123							
Adj. R-Square	0.99358							
		Value	Standard Error					
stress	Intercept	-6.06e ⁻⁴	4.55e ⁻⁴					
stress	Slope	0.93167	0.00602					
PQD@PS film								
Equation	y = a + b*x							
Weight	No Weighting							
Residual Sum of Squares	0.00234							
Adj. R-Square	0.99493							
		Value	Standard Error					
stress	Intercept	-0.32153	0.00458					
stress	Slope	130.80527	2.03652					

Table S2 The detailed linearly fitting results of the stress-strain curves of PQD@SPSand PQD@PS films.

Width	Si-28/40	Si-27/30	Si-15/20	Si-14/10
[µm]				
Si master (W ₁)	41.00	29.75	19.60	9.85
PQD@SPS replica	40.10	28.77	19.40	10.11
(W ₂)	40.10			
Shrinkage	2.20/	3.3%	1.0%	-2.6%
$(W_{1-}W_2/W_1)$	2.2%			

Table S3 Average width shrinkages of pillars in PQD@SPS replicas and cavities incorresponding Si masters.

References

- 1. P. Zhang, G. Yang, F. Li, J. Shi and H. Zhong. *Nat Commun*. 2022, **13**, 6713.
- J. Yang, D. Hahm, K. Kim, S. Rhee, M. Lee, S. Kim, J. H. Chang, H. W. Park, J. Lim, M. Lee, H. Kim, J. Bang, H. Ahn, J. H. Cho, J. Kwak, B. Kim, C. Lee, W. K. Bae and M. S. Kang. *Nat Commun.* 2020, **11**, 2874.
- 3. Y. H. Kim, S. Koh, H. Lee, S. M. Kang, D. C. Lee and B. S. Bae. *ACS Appl Mater Interfaces*. 2020, **12**, 3961.
- F. Li, C. Chen, S. Lu, X. Chen, W. Liu, K. Weng, Z. Fu, D. Liu, L. Zhang, H. Abudukeremu, L. Lin, Y. Wang, M. Zhong, H. Zhang and J. Li. ACS Nano. 2022, 16, 13674.
- S. Srivastava, K. E. Lee, E. A. Fitzgerald, S. J. Pennycook and S. Gradecak. ACS Appl. Mater. Interfaces. 2022, 14, 48995.
- Y. Yin, Z. Hu, M. U. Ali, M. Duan, L. Gao, M. Liu, W. Peng, J. Geng, S. Pan, Y. Wu, J. Hou, J. Fan, D. Li, X. Zhang and H. Meng. *Adv. Mater. Technol.* 2020, **5**, 2000251.