Supplementary Information

A Non-Invasive Approach to the Resistive Switching Physical Model of Ultra-Thin Organic-Inorganic Dielectric-based RRAM

Alba Martinez¹, Byung Jin Cho^{2,*}, Min Ju Kim^{3,*}

¹Department of Materials Science Engineering, Korea Advanced Institute of Science and

Technology, Daejeon, 34142, Republic of Korea

² School of Electrical Engineering, Korea Advanced Institute of Science and Technology,

Daejeon, 34142, Republic of Korea

³School of Electronics and Electrical Engineering, Dankook University, Gyeonggi-do, 16890, Republic of Korea

* Corresponding author: Byung Jin Cho, Min Ju Kim

Tel.:

E-mail address: bjcho@kaist.edu, minju9062@dankook.ac.kr

Figure S1. (a) Schematic illustration of the organic-inorganic Hf hybrid film synthesis via iCVD process for the H-ReRAM matrix. High-resolution XPS (b) survey, (c) C 1s, (d) N 1s, (e) O 1s, and (f) Hf 4f orbitals spectra of Hf hybrids.

1. Characterization of functionalities in the Hf hybrid

In C 1s high-resolution spectra (Figure S1c), the carbon bonding peaks are at the following energy levels: 289.0 (O-C*=O), 286.5 (C*-O/C*-O-H), 285.0 (C*-C/C*-C-O), 283.9 (C*-O-Hf), and 282.5 (C*-Hf) eV. The presence of a small amount of metallic C*-Hf bonding suggests its potential role in assisting the filament formation within the hybrid matrix. In the N 1s high-resolution spectra (Figure S1d), a small peak related to nitrogen is observed at 400 eV, indicating the presence of Hf-N*-C bonding (Hf-N*-C). The O 1s high-resolution spectra (Figure S1e) show the following peaks corresponding to oxygen bonding: 533.0 (O* in HEMA matrix), 531.9 (Hf-O*-H), 530.2 eV (Hf-O*). The Hf 4f spectra (Figure S1f) further confirm the presence of Hf-OH and Hf-O bonding, in agreement with the FTIR analysis results from Figure 2(b). The Hf-O-H and Hf-O peaks in the Hf 4f spectra align with the observed with –OH peak at 3400 cm⁻¹, metal-OH vibration peak around 900 cm⁻¹, and metal-O vibration peak around 600 cm⁻¹ in FTIR spectra.

Figure S2. RPS measurement of the switching resistance from LRS to HRS at every RPS-step for each V_{START} at (a) 500 ms, and (b) 100 ns pulse widths. Each color represents a new switching cycle, where $V_{\text{RESET}} = 0V$ is the initial resistance state before applying the reset RPS bias, and every consecutive dot is a new step in the series from the corresponding V_{START} to the final nth step, or V_{END} .

Figure S3. Measurement of V_{SET} after RPS-processed RESET for each V_{START} at (a) 500 ms (in purple, data referring to the non-RPS-processed case) and (b) 100 ns.

Figure S4. Illustration of leaky ON-state filament dynamics in the Hf H-ReRAM devices under a forwardbiased (FWD V_f) electroforming process, and the reverse bias-induced restoring of the filament (REV V_f).

4. Failure mechanism of leaky ON-state CF during forward-biased electroforming.

During the electroforming process in ReRAM devices, a strong forward bias is applied, causing the migration of oxygen ions (O^{2^-}) in the HfO_x dielectric towards the Al(TE). at the Al(TE)/Hf-dielectric interface, these O^{2^-} are oxidized into non-lattice oxygen atoms (O_2), resulting in an oxygen-rich region (Figure S4, step 0). This region is susceptible to the formation of an Al_2O_3 interlayer, which acts as a passivation layer for the formed conductive filament (CF) (step 1)¹. The presence of the Al_2O_3 interlayer allows for leaky ON-states to be realized, as electrons tunnel through the oxide passivation layer and into the CF (step 2)^{2, 3}. This behavior can be confirmed by applying a reverse-biased forming voltage, which removes the leaky ON-state and reveals well-connected electrodes. During the reverse bias, the Al_2O_3 interlayer dissociates into Al ions (Al^{3^+}) and O^{2^-} . The Al^{3^+} diffuse into the negatively charged Al(TE), while the O^{2^-} diffuse back into the dielectric (step 3). Due to the heated region of the CF, Soret diffusion

causes the 0^{2^-} to prefer to recombine with the bulk oxygen vacancies $(V_{0}^{2^+})$. As a result, the remaining $V_{0}^{2^+}$ at the CF drift towards the virtually negative Al-CF tip to fully connect the filament and achieve a complete ON-state (step 4).

Table S1. Detailed resistive switching process steps for the (a) amplitude, (b) pulse width and (c) temperature modulated RPS tests.

Where *i* = -2.0, -3.0, -3.4, -3.6, -3.8, -4.0

(b)	STABILIZATION		RPS-RESET				SET		
	V _{RESET}	V _{SET}	V _{start}	\mathbf{V}_{STEP}	\mathbf{V}_{END}	V _{READ}	V _{SET}		
Operating voltage (V)	-5.0	6.0	-3.6	-0.2	-4.2	-1.0	6.0		
Pulse scheme		Long Short pulse t v v v v v v v v v v v v v v v v v v v				v v t			
Pulse width (s)	>0.5	>0.5	0.5	10	-4	10 ⁻⁷	>0.5		
Current Compliance (µA)	N/A	100	N/A				100		

(c)	STABIL	RPS-RESET				SET			
	V _{RESET}	V _{SET}	V _{start}	\mathbf{V}_{STEP}	V_{END}	V _{READ}		\mathbf{V}_{SET}	
Operating voltage (V)	-5.0	6.0	-3.4	-0.2	N/A	-1.0		6.0	
Pulse scheme	V VRESET		T Sau Sau Sau RES	ET SET	RESET	SET RESE	T SET	RESET SET	\overrightarrow{t} \overrightarrow{t} \overrightarrow{t} \overrightarrow{t}
Process T (K)	room T	room T		300	33	30	360	390	
Pulse width (s)	>0.5	>0.5	10-7			>0.5			
Current Compliance (µA)	N/A	100	N/A			100			

Reference

- Yuan, F.-Y.; Deng, N.; Shih, C.-C.; Tseng, Y.-T.; Chang, T.-C.; Chang, K.-C.; Wang, M.-H.; Chen, W.-C.; Zheng, H.-X.; Wu, H., Conduction mechanism and improved endurance in HfO 2-based RRAM with nitridation treatment. *Nanoscale research letters* 2017, *12* (1), 574.
- 2. Yu, S.; Wu, Y.; Wong, H.-S. P., Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. *Applied Physics Letters* **2011**, *98* (10), 103514.
- Chang, K.-C.; Chang, T.-C.; Tsai, T.-M.; Zhang, R.; Hung, Y.-C.; Syu, Y.-E.; Chang, Y.-F.; Chen, M.-C.; Chu, T.-J.; Chen, H.-L., Physical and chemical mechanisms in oxide-based resistance random access memory. *Nanoscale research letters* 2015, 10 (1), 1-27.