Supporting Information for

Charge and Spin Thermoelectric Transport in Benzene-Based Molecular Nano-Junctions: A Quantum Many-Body Study

Parbati Senapati¹ and Prakash Parida^{1, *}

¹Department of Physics, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India

Figure S 1. Sketch of the energetics for the $6 \rightarrow 7$ transition in benzene (positive bias regime). The bold line represents the appropriate possible transitions for which current flow occurs, while the dotted line (only for ortho and meta-connections) represents the forbidden transitions that result in a current blocking situation yielding NDC at specific bias ranges. There is no current-blocking state in the para connection of benzene.

Figure S 2. The charge density distribution of 6-electron ground state (ϕ_6^{gs}) , spin down and spin up of 7-electron ground state $(\phi_{7\downarrow}^{gs})$ and first excited state $(\phi_{7\uparrow}^{1es})$ over the sites of benzene at (a) B = 2T,(b) B = 5T and (c) B = 10T respectively.

Table S I. 6e-gs and 7e-gs energy level splitting in benzene molecule weakly coupled to normal electrode at different magnetic field (B). Note: in NE, $\phi_{7\uparrow}^{1es}$ will be $\phi_{7\uparrow}^{gs}$.

Electrode	ϕ_6^{gs}	$\phi^{gs}_{7\downarrow}$	$\phi_{7\uparrow}^{1es}$
NE	-30.73	-25.68	-25.68
NE $(B=2T)$	-30.73	-25.91	-25.45
NE $(B=5T)$	-30.73	-26.25	-25.10
NE $(B=10T)$	-30.73	-26.83	-24.53

 $^{^{\}ast}$ pparida@iitp.ac.in

Figure S 3. (a) The electrical conductance, (b) Seebeck coefficient, and (c) the probabilities of occupying $4e^-$, $5e^-$, $6e^-$, $7e^-$ and $8e^-$ states as a function of chemical potential (μ) at $k_BT = 0.1eV$.

Figure S 4. The 2D plot of charge Seebeck coefficient as a function of different chemical potentials with varying five different temperatures showing saw-tooth pattern.

Figure S 5. (a) Represents the 2D plot of electrical conductance (b) derivative of Fermi-Dirac distribution $(f'(\delta \varepsilon))$, where ε is transition energy) as a function of μ at $T = 0.005k_BT$ (only taking the 6 \rightarrow 7 transition). The inset of the figure provides a magnified view of a specific region.

Figure S 6. The maximum value of $Z_s T$ as a function of different polarization (p).

Figure S 7. The maximum value of $Z_s T$ as a function of different magnetic field (B).