Synthesis of MnOOH and its application in supporting hexagonal Pd/C catalyst for oxygen reduction reaction

Zheng Cheng, Wei Cheng, Xin-Ning Lin, Rong-Hua Zhang*, Luo-Yi Yan, Gui-Xian Tian,

Xiao-Yu Shen, Xin-Wen Zhou*

College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China

Corresponding authors: rhzhang@ctgu.edu.cn; xwzhou@ctgu.edu.cn

Fig. S1. LSV curves of (a) MnO₂-1, (b) MnO₂-2, (c) MnO₂-3, (d) 10%Pd-C-MnOOH-1:1, (e) 40%Pd-C-MnOOH-1:1, (f) 20%Pd-C-MnOOH-1:2, (g) 20%Pd-C-MnOOH-2:1, (h) 20%Pd-C-MnOOH*-1:1, (i) commercial Pd/C catalysts and (j) commercial Pt/C catalysts with different speed in an oxygen-saturated 1.0 M KOH solution, (k) 20%Pd-C-MnOOH-1:1 and commercial Pt/C catalysts at 1600 rpm in an oxygen-saturated 1.0 M KOH solution, (l) The i-t images of 20% Pd-C-MnOOH-1:1 and Pd/C were tested under saturated oxygen atmosphere in 0.1M KOH solution for 10 hours.

Fig. S2. CV curves of different Pd-C-MnOOH catalysts between -0.45 and -0.35 V (vs SCE) in 1.0 M KOH solution with different scan rates.

Fig. S3. Electrochemical active area (CdI) curves of different Pd-C-MnOOH catalysts. (a) 10%Pd-C-MnOOH-1:1, (b) 20%Pd-C-MnOOH-1:1, (c) 40%Pd-C-MnOOH-1:1, (d) 20%Pd-C-MnOOH-1:2, (e) 20%Pd-C-MnOOH*-1:1, (f) commercial Pd/C catalysts.

Fig. S4. (a)TEM and (b) HRTEM images of 20%Pd-C-MnOOH-1:1 catalyst after use.

Catalyst	j	$E_{1/2}$	Electrolyte	Rotational	Reference
	(mAcm ⁻²)	(V)		speed(rpm)	
MnO ₂	-3.78	0.52	0.1 M KOH	2500	8
MnOOH	-3.83	0.74	0.1 M KOH	1600	1
MnO ₂ /C	-5.51	0.61	0.1 M KOH	2500	8
MnO ₂ /C-3:7	-2.58	0.66	0.1 M KOH	1600	2
10%Pd/MnO ₂	-4.72	0.78	0.1 M KOH	1600	2
Pd/MnO ₂	-5.52	0.67	0.1 M KOH	1600	3
Pd/MnO ₂	-3.75	0.76	0.5 M NaOH	1600	5
Pd/MnO ₂	-4.56	0.83	0.1 M KOH	1600	7
Pd/ α -MnO ₂	-4.38	0.67	0.1 M KOH	1600	6
Pd-HSAG	-4.20	0.84	0.1 M KOH	1600	4
Pd/MnO ₂ -CNT	-6.48	0.72	0.1 M KOH	1600	3
8.7%Pd/MnO ₂	-5.82	0.68	0.1 M KOH	2500	8
8.7%Pd/Mn-C	-6.70	0.74	0.1 M KOH	2500	8
20%Pd/C/MnOOH	-4.78	0.84	0.1 M KOH	1600	This work

Table S1 ORR activity comparison table of similar palladium-based catalysts

References

- [1] D. P. Liu, J. Tian, Y. G. Tang, J. S. Li, S. A. Wu, S. J. Yi, X. B. Huang, D. Sun, H.
 Y. Wang, *Chem. Eng. J*, 2021, 406, 126772.
- [2] I. Cruz-Reyes, B. Trujillo-Navarrete, K. Garcia-Tapia, M. I. Salazar-Gastelum, F. Paraguay-Delgado, R. M. Felix-Navarro, *Fuel*, 2020, 279, 118470.
- [3] W. K. Xiang, Y. H. Zhao, Z. Jiang, X. P. Li, H. Zhang, Y. Sun, Z. J. Ning, F. P. Du, P. Gao, J. Qian, K. C. Kato, M. Yamauchi, Y. H. Sun, *J. Mater. Chem. A*, 2018, 6, 23366.

- [4] M. Nunes, D. M. Fernandes, M. V. Morales, I. Rodriguez-Ramos, A. Guerrero-Ruiz, C. Freire, *Catal Today*, 2020, 357, 279-290.
- [5] R. Adhikary, A. De, S. Chattopadhyay, J. Datta, *Energy Fuels*, 2022, 36, 14411-14422.
- [6] M. M. Liu, S. Hu, Y. J. Zhang, C. Y. Zhao, W. Q. Jiang, C. H. Qi, X. H. Zhu, P. P. Qiu, Y. Sun, K. C. Kato, Y. H. Zhao, X. P. L i, M. Yamauchi, W. Luo, *Adv. Mater. Interfaces*, 2021, 8, 2002060.
- [7] Y. Wang, J. L. Liu, H. J. Yuan, F. Liu, T. J. Hu, B. Q. Yang, Adv. Mater. Interfaces, 2023, 33, 2211909.
- [8] W. Sun, A. Hsu, R. R. Chen, J. Power Sources, 2011, 196, 4491-4498.