Supporting Information

Ni/NiO@NC as a high efficiency and durable HER electrocatalyst derivated from Nickel(I) complexe: the importance of polydentate amino acid ligand

Xu Yang^{a,1}, Mengxue Liu^{a,1}, Fang Cui^{*a}, Qinghai Ma^a, Tieyu Cui^{*a}

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China.

These authors contributed equally.

Corresponding Authors:

Fang Cui, Tieyu Cui

Fax: (+86) 0451-86403646

Email: cuifang@hit.edu.cn (F. Cui), cuit@hit.edu.cn (T. Y. Cui)

Fig. S1 (a) TEM images of Ni/NiO/C-Acrylic acid

Fig. S2 TEM image of Ni/NiO@NC-540.

Fig. S3 The full scan of the XPS spectrum of Ni/NiO@NC-540

Fig. S4 The Ni 2p spectrum of Ni/NiOx@NC-AA-T : (a) 480°C, (b) 540°C, (c) 600°C, (d) 660°C.

Fig. S5 Cyclic voltametric curves of Ni/NiO@NC-480(a), -540(b), -600(c) and -660(d) at different scan rates where no faradaic reactions occurred.at different scan rates where no faradaic reactions occurred.

Fig. S6 Polarization curves before and after 6000 CV cycles (-0.9 V \sim -1.4 V)

Fig. S7 (a) LSVs of Ni/NiO@NC-540-NF, -IF and 20w% Pt/C for HER. (b) Overpotentials of different catalysts at current densities of 10 mA cm⁻² and 100 mA cm⁻².

Fig. S8 (a) The Tafel slope of Ni/NiO@NC-540-NF, -IF and 20w% Pt/C for HER. (b) The relevant EIS plot.

Fig. S9 Cyclic voltametric curves of Ni/NiO@NC-540–IF(a) and -NF(b) at different scan rates where no faradaic reactions occurred.at different scan rates where no faradaic reactions occurred, the relevant Cdl plot (c).

Fig. S10 Polarization curves before and after 20 h chronoamperometry test(a), (b)Chronoamperometry test of Ni/NiO/C-500-NF (50 mV vs. RHE).

Fig. S11 XRD plots before and after 20 h chronoamperometry test

Table. S1 Content ratio of Ni with different valence states in Ni/NiO_x@NC-AA at different synthesis temperatures.

Catalysts	$Ni^{0}2p_{_{3/2}}(\%)$	Ni ²⁺ 2p3/2 (%)	Ni ³⁺ 2p3/2 (%)	Ni ⁰ /(Ni ²⁺ +Ni ³⁺)
Ni/NiO _x @NC-480	18.7	13.0	28.0	0.46
Ni/NiO _x @NC-540	21.4	15.6	19.4	0.61
Ni/NiO _x @NC-600	27.5	15.0	12.8	0.99
Ni/NiO _x @NC-660	27.6	15.4	14.3	0.93

Table.S2. Overpotential comparison of Ni/NiO@NC-540 and Ni/NiO@NC-540-NF with state-of-the-art Ni-based HER catalysts.

Catalyst	η@10mA cm ⁻² [mV]	Reference
Ni/NiO-NC	179 (1 M KOH)	1
Sr-NiO	164 (4.24 M KOH)	2
NiOx-AC-500	180 (0.1 M KOH)	3
Ni-NiO/Ti ₃ C ₂ T _x	72 (1 M KOH)	4
Ni-NiO@3DHPG	310 (1 M KOH)	5
H–Ni/NiO/C	87 (1 M KOH)	6
CNO@NSG	109.6 (1 M KOH)	7
CNN-500	127 (1 M KOH)	8
CoP/P-NiO/NF	52 (1 M KOH)	9
Mo-NiCoP/NF	64 (1M KOH)	10
P-Ni/Mo-TEC@NF	22 (1 M KOH)	11
Ni ₂ P/FeP-FF	42 (1M KOH)	12
CoS/Ni _x P _y /Fe-Ni ₃ S ₂ @NF	49 (1 M KOH)	13
NiWO4-Ni ₃ S ₂ @NiO/NF-3	89 (1 M KOH)	14
Co_2P-x/Ni_2P-y @ NF	79 (1 M KOH)	15
Ni/NiO _x @NC-AA-540	100 (1 M KOH)	This work
Ni/NiO _x @NC-AA-540-NF	36 (1 M KOH)	This work

References

- Y. Liu, G. Mou, Y. Wang, F. He, N. Dong, Y. Lin, M. Zhong and B. Su, ACS Applied Nano Materials, 2022, 5, 2953-2961.
- 2. X. Yi, X. He, F. Yin, G. Li and Z. Li, *Electrochim. Acta*, 2021, 391, 138985.
- 3. V. C. Hoang, K. N. Dinh and V. G. Gomes, Carbon, 2020, 157, 515-524.
- B. Zhang, Z. Du, R. Sun, X. Lai, J. Lan, X. Liu and L. Yan, ACS Appl. Mater. Interfaces, 2022, 14, 47529-47541.
- N. Ullah, W. Zhao, X. Lu, C. J. Oluigbo, S. A. Shah, M. Zhang, J. Xie and Y. Xu, *Electrochim.* Acta, 2019, 298, 163-171.
- H. H. Do, M. A. Tekalgne, Le QV, J. H. Cho, S. H. Ahn and S. Y. Kim, *Nano Converg.*, 2023, 10,
 6.
- 7. H. Li, H. Fu, J. Yu, L. Wang, Y. Shi and L. Chen, J. Alloy. Compd., 2022, 922.
- 8. Y. Yan, Q. Ma, F. Cui, J. Zhang and T. Cui, Electrochim. Acta, 2022, 430.
- F. Nie, Z. Yang, X. Dai, Z. Ren, X. Yin, Y. Gan, B. Wu, Y. Cao, R. Cai and X. Zhang, J. Colloid. Interface. Sci., 2022, 621, 213-221.
- Y. Zhao, J. Chen, S. Zhao, W. Zhou, R. Dai, X. Zhao, Z. Chen, T. Sun, H. Zhang and A. Chen, J. Alloy. Compd., 2022, 918.
- 11. P. Zuo, X. Ji, J. Lu, Y. Chai, W. Jiao and R. Wang, J. Colloid. Interface. Sci., 2023, 645, 895-905.
- 12. M. Jiang, H. Zhai, L. Chen, L. Mei, P. Tan, K. Yang and J. Pan, Adv. Funct. Mater., 2023.
- 13. Z. Wang, B. Li, L. Wang, L. Chu, M. Yang and G. Wang, *Electrochim. Acta*, 2023, 462, 142767.
- 14. R. Shi, J. Yang and G. Zhou, Chem. Eng. J., 2023, 457.
- 15. H. Zhao, J. Liang and Y. Zhao, J. Alloy. Compd., 2022, 907.