Supporting Information

Resistance Driven H₂ Gas Sensor: High Entropy Alloy Nanoparticles decorated 2D MoS₂

Bidesh Mondal¹, Xiaolei Zhang², Sumit Kumar³, Feng Long^{2,4}, Nirmal Kumar Katiyar⁵, Mahesh Kumar^{*3}, Saurav Goel^{*5,6} and Krishanu Biswas^{1*}

¹Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India, 208016

² Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, UK

³ Department of Electrical Engineering, Indian Institute of Technology Jodhpur, India

⁴Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China

⁵School of Engineering, London South Bank University, London UK, SE1 0AA

⁶University of Petroleum and Energy Studies, Dehradun 248007, India

Fig. S1 Materials design process and its accompanying consistent experimental methodology

Equilibrium fractions of the phases present in 1 mole of $Ti_{20}Zr_{20}V_{20}Nb_{20}Hf_{20}$ HEA system were estimated using Thermo-Calc software and the TCHEA V3 database. The phase prediction is made between (500 and 3000 K) at 1 atm. The alloy solidifies as BCC solid solution (BCC_B2) below 1900 K, as presented in Figure S2, and is stable down to 900K.

Fig. S2 Equilibrium phase fraction of the $Ti_{20}Zr_{20}V_{20}Nb_{20}Hf_{20}$ HEA as a function of temperature calculated using the TCHEA3 database.

Fig. S3 Backscattered SEM micrograph and EDS mapping of homogenized $Ti_{20}Zr_{20}V_{20}Nb_{20}Hf_{20}$ alloy.

Fig. S4 EDS and Elemental mapping of HEA NPs.

Fig.S5 Particle size distribution of HEA nanoparticles using TEM.