Supporting Information

Direct in situ photolithography of ultra-stable CsPbBr₃ quantum dot

arrays based on crosslinking polymerization

Yanli Wan¹, Yixing Zhao¹, Yaling Li, Zhenwei Zhang, Sen Li, Tingfang Tian *,

Li Wang*

School of Physics and Materials Science, Nanchang University, Nanchang 330031

Figures

Figure S1 The EDS of the (a) pristine and (b) XBPO-treated CsPbBr₃ PQDs

¹ These people contribute equal to this work.

Figure S2 (a) and (b) TEM micrographs and (c) high-resolution diffraction patterns of CsPbI₃ PQDs treated with XBPO after aged for a week; (d) and (e) TEM and (f) high-resolution diffraction patterns of traditional CsPbI₃ PQDs after one week of aging.

Figure S3. Size distribution of the XBPO-treated $CsPbI_3$ PQDs

Figure S4. (a) ³¹P NMR spectrum of the Pristine and XBPO treated PQDs; (b) 1H NMR spectra of phenyl phsosphorus dioxide XBPO

Figure S5. XPS spectra of XBPO treated and Pristine PQDs. Full XPS spectra of (a) Pristine and XBPO treated PQDs; high-resolution XPS spectra of (b) C1s, (c) Cs 3d, (d) Br 3d, (e) the Br/Pb atomic ratio (f) P2p of the CsPbBr₃ PQDs.

Tables

Table S1. The optical properties of CsPbBr ₃ QDs									
		FWHM (nm)	PLQY	τ_1 (ns)	<i>B</i> ₁ (%)	$ au_2$ (ns)	B_2 (%)	$ au_{\mathrm{int}}\left(\mathrm{ns} ight)$	χ^2
	PL (nm)		(%)						
Pristine	513	21	66.7	7.43	63.80	16.33	36.12	10.65	1.34
Treated	517	17	99.5	21.22	75.52	58.22	24.48	30.28	1.02

 B_i is the pre-exponential factor in the model function for exponential component analysis.

 χ^2 is the reduced chi-square value of the decay fitting.

 τ_{int} is the average lifetime. $\tau_{\text{int}} = \sum B_i \cdot \tau_i$

	PL (nm)	FWHM (nm)	PLQY (%)	τ_1 (ns)	<i>B</i> ₁ (%)	τ_2 (ns)	B_2 (%)	$ au_{\mathrm{int}}\left(\mathrm{ns} ight)$	χ^2
Pristine	662	49	44.5	5.28	32.76	13.86	67.24	11.05	1.14
Treated	687	45	91.7	25.88	47.08	134.19	52.92	83.10	1.00

Table S2. The optical properties of CsPbI₃ QDs

 B_i is the pre-exponential factor in the model function for exponential component analysis.

 χ^2 is the reduced chi-square value of the decay fitting.

 τ_{int} is the average lifetime. $\tau_{\text{int}} = \sum B_i \cdot \tau_i$

Table 55. The optical properties of CSF 013 QDS after 5 months								
	PLQY (%)	τ_1 (ns)	B_1 (%)	$ au_2$ (ns)	B_2 (%)	$ au_{\mathrm{int}}\left(\mathrm{ns} ight)$	χ^2	
Treated	70.5	25.42	47.78	96.59	52.22	62.59	1.19	

Table S3. The optical properties of CsPbI₃ QDs after 3 months

 B_i is the pre-exponential factor in the model function for exponential component analysis. χ^2 is the reduced chi-square value of the decay fitting.

 τ_{int} is the average lifetime. $\tau_{\text{int}} = \sum B_i \cdot \tau_i$