Supporting Information

Active-site stabilized Bi metal-organic framework-based catalyst for

highly active and selective electroreduction of CO₂ to formate over a

wide potential window

Leliang Cao^a, Jie Huang^a, Xueying Wu^a, Ben Ma^a, Qingqing Xu^a, Yuanhong Zhong^{a, b*}, Ying Wu^a, ^{b*}, Ming Sun^{a, b}, Lin Yu^{a, b*}

^aKey Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China

^bJieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R. China

Contents

Fig. S1 . (a) NMR trace of formate at -0.9 V potential for ECR by Bi-BDC-120 °C, (b) NMR standard curve of formate.
Fig. S2. (a-b) The SEM images of Bi-BDC-100 °C, (c-d) Bi-BDC-120 °C, and (e-f) Bi-BDC-140 °C.
Fig. S3. (a) TEM and (b) HR-TEM image of the Bi-BDC-140 °C catalyst2
Fig. S4. XPS spectra of the Bi-BDC-140 °C: (a) survey scan, (b) C 1s, (c) Bi 4f, and (d) O 1s2
Fig. S5. Faraday efficiency (FE) of the products by Bi-BDC-T at -1.1 V vs RHE
Fig. S6. Chronoamperometric responses at different working potentials in CO_2 saturated
0.1 mol L $^{-1}$ KHCO $_3$ catalyzed by (a) Bi-BDC-100 °C, (b) Bi-BDC-120 °C, (c) Bi-BDC-140 °C and
(d)commercial Bi ₂ O ₃ 3
Fig. S7. Faraday efficiency (FE) of H_2 and CO at different working potentials4
Fig. S8. (a) FE of products and current density at different working potentials in Ar-
saturated electrolyte using Bi-BDC-120 $^{\circ}\text{C}$ as electrocatalyst. (b) NMR trace at -0.9 V
potential in Ar-saturated electrolyte using Bi-BDC-120 °C as electrocatalyst4
Fig. S9. Energy efficiencies (EE) of formate at different working potentials for ECR
catalyzed by Bi-BDC-100 °C, 120 °C,140 °C, and commercial Bi_2O_35
Fig. S10. Electrochemically surface area (ECSA) measurements. Cyclic voltammograms
(CVs) of different catalysts at various sweep speeds (20–100 mV s-1) in the region of 0.10
to 0.20 V vs. RHE: (a) Bi-BDC-100 $^{\rm o}\text{C}$ (b) Bi-BDC-120 $^{\rm o}\text{C}$ (c) Bi-BDC-140 $^{\rm o}\text{C}$ and (d)
commercial Bi ₂ O ₃ 5
Fig. S11. Comparison of Linear Scanning Voltammogram (LSV) curves before and after the
36-hour stability test
Fig. S12. FEsformate for catalysts synthesized with different molar ratios of $Bi(NO_3)_3 \cdot 5H_2O$ to H_2BDC
Fig S13 EEsformate for catalysts synthesized with various stock concentrations but
keeping the same molar ratios of $Bi(NO_2)$:5H ₂ O and H ₂ BDC (i.e. 0.3:0.45, 2:3, 4:6, 6:9)
and 9:13 5)
Fig. S14 Theoretical calculation of CO ₂ adsorption on the surface of (a) Bi_2O_2 (b) Bi-BDC.
and the crystal surface diagram of CO ₂ adsorption by (c) Bi_2O_2 (d-f) Bi -BDC
Fig.S15 . XRD patterns of the synthesized Bi ₂ O ₂ CO ₂
Fig.S16 . (a) Faraday efficiency of formate at different working potentials with synthesized
$Bi_2O_2CO_3$ catalysts. (b) The bias current densities of formate. (c) Energy efficiencies (EE) of
formate. (d) Cyclic voltammograms (CVs) of synthesized $Bi_2O_2CO_3$. (e) ECSA measurement.
The charging current densities are plotted against the scan rates of CVs. (f) Nyquist plots
for Bi-BDC-120 °C and synthesized Bi ₂ O ₂ CO ₃ with the fitted circuit shown
Table S1 Comparison of Bi-BDC-120 °C with the reported Bi-based catalysts for ECR conversion of
CO ₂ to formate9

Fig. S1. (a) NMR trace of formate at -0.9 V potential for ECR by Bi-BDC-120 °C, (b) NMR standard curve of formate.

Fig. S2. (a-b) The SEM images of Bi-BDC-100 °C, (c-d) Bi-BDC-120 °C, and (e-f) Bi-BDC-140 °C.

Fig. S3. (a) TEM and (b) HR-TEM image of the Bi-BDC-140 °C catalyst

Fig. S4. XPS spectra of the Bi-BDC-140 °C: (a) survey scan, (b) C 1s, (c) Bi 4f, and (d) O 1s

Fig. S5. Faraday efficiency (FE) of the products by Bi-BDC-T at -1.1 V vs RHE.

Fig. S6. Chronoamperometric responses at different working potentials in CO₂ saturated 0.1 mol L⁻¹ KHCO₃ catalyzed by (a) Bi-BDC-100 °C, (b) Bi-BDC-120 °C, (c) Bi-BDC-140 °C and (d)commercial Bi_2O_3 .

Fig. S7. Faraday efficiency (FE) of H₂ and CO at different working potentials.

Fig. S8. (a) FE of products and current density at different working potentials in Arsaturated electrolyte using Bi-BDC-120 °C as electrocatalyst. (b) NMR trace at -0.9 V potential in Ar-saturated electrolyte using Bi-BDC-120 °C as electrocatalyst.

Fig. S9. Energy efficiencies (EE) of formate at different working potentials for ECR catalyzed by Bi-BDC-100 °C, 120 °C, 140 °C, and commercial Bi₂O₃.

Fig. S10. Electrochemically surface area (ECSA) measurements. Cyclic voltammograms (CVs) of different catalysts at various sweep speeds (20–100 mV s-1) in the region of 0.10 to 0.20 V vs. RHE: (a) Bi-BDC-100 °C (b) Bi-BDC-120 °C (c) Bi-BDC-140 °C and (d) commercial Bi_2O_3 .

Fig. S11. Comparison of Linear Scanning Voltammogram (LSV) curves before and after the 36-hour stability test.

Fig. S12. FEsformate for catalysts synthesized with different molar ratios of $Bi(NO_3)_3 \cdot 5H_2O$ to H_2BDC .

Fig.S13. FEsformate for catalysts synthesized with various stock concentrations but keeping the same molar ratios of $Bi(NO_3)_3 \cdot 5H_2O$ and H_2BDC (i.e., 0.3:0.45, 2:3, 4:6, 6:9, and 9:13.5).

Fig. S14 Theoretical calculation of CO_2 adsorption on the surface of (a) Bi_2O_3 (b) Bi-BDC, and the crystal surface diagram of CO_2 adsorption by (c) Bi_2O_3 (d-f) Bi-BDC.

Fig.S15. XRD patterns of the synthesized Bi₂O₂CO₃.

Fig.S16. (a) Faraday efficiency of formate at different working potentials catalyzed by the synthesized $Bi_2O_2CO_3$. (b) Comparison of the bias current densities and (c) Energy efficiencies (EE) of formate catalyzed with $Bi_2O_2CO_3$ and Bi-BDC-120 °C. (d) Cyclic voltammograms (CVs) of synthesized $Bi_2O_2CO_3$. (e) Comparison of ECSA measurement catalyzed with $Bi_2O_2CO_3$ and Bi-BDC-120 °C, and the charging current densities were plotted against the scan rates of CVs. (f) Nyquist plots for Bi-BDC-120 °C and synthesized $Bi_2O_2CO_3$ with the fitted circuit shown.

Catalysts	Electrolyte	E (V <i>vs.</i> RHE)	FE _{formate} (%)	J _{formate} (mA cm⁻²)	Window (mV)	Stability	Ref.
Bi-BDC-120 °C	0.1 M KHCO ₃	-0.9	93.6	-6.6	700	Thi 36 h Thi	This work
		-1.1	97.2	-16.7			This work
Bi-MP	1 M KOH	-1.0	95	-180 (flow-cell)	600	10 h	1
Bi-BTC	0.1 M KHCO ₃	-1.1	80	-8	400	30 h	2
Bi-BTC-D	0.5 M KHCO ₃	-0.86	95.5	-11.2	400	12 h	3
Bi ₂ O ₃ @C	0.5 M KHCO ₃	-0.9	93	-7.5	300	10 h	4
Bi/CeOx	0.2 M NaSO ₄	-1.3	92	-137 (flow-cell)	500	30 h	5
Bi Ns	0.1 M KHCO ₃	-1.1	92	-9	300	10 h	6
PNCB	0.5 M KHCO ₃	-1.05	92.3	-22	400	No date	7
Bi-Sn	0.5 M KHCO ₃	-1.14	94	-40.2	300	No date	8
Bi/Bi ₂ O ₃ -CP	0.5 M KHCO ₃	-0.87	90.4	-38.8	200	17 h	9
Bi/CN	0.1 M KHCO ₃	-1.3	98	-15.7	500	20 h	10
Bi ₂ O ₃ NSs@MCCM	0.1 M KHCO ₃	-1.256	93.8	-15.1	400	12 h	11
Bi ₂ O ₂ CO ₃	0.5 M KHCO ₃	-0.669	96.1	-9.61	300	48 h	12
Cu NWs-Bi NSs	0.1 M KHCO ₃	-0.86	87	-4.5	100	8 h	13

Table S1 Comparison of Bi-BDC-120 °C with the reported Bi-based catalysts for ECR conversion of CO₂ to formate.

Reference

- 1. C. Lin, Y. Liu, X. Kong, Z. Geng and J. Zeng, *Nano Res.*, 2022, **15**, 10078-10083.
- 2. L. Liu, K. Yao, J. Fu, Y. Huang, N. Li and H. Liang, *Colloid Surface A*, 2022, **633**, 127840.
- 3. L. Jiao, W. Yang, G. Wan, R. Zhang, X. Zheng, H. Zhou, S. H. Yu and H. L. Jiang, *Angew. Chem. Int. Ed.*, 2020, **132**, 20770-20776.
- 4. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman and B. Y. Xia, Angew. Chem. Int. Ed., 2020, 59, 10807-10813.
- 5. Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan and Q. Jiang, Angew. Chem. Int. Ed., 2021, 60, 8798-8802.
- 6. D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao and S. Z. Qiao, Angew. Chem. Int. Ed., 2021, 60, 18178-18184.
- 7. Y. Wang, L. Xu, L. Zhan, P. Yang, S. Tang, M. Liu, X. Zhao, Y. Xiong, Z. Chen and Y. Lei, Nano Energy, 2022, 92, 106780.
- 8. G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai, L. Yang and Z. Chen, Adv. Energy Mater., 2018, 8, 1802427.
- 9. D. Wu, G. Huo, W. Chen, X.-Z. Fu and J.-L. Luo, Appl. Catal. B: Environ., 2020, 271, 118957.
- 10. X. Ma, J. Tian, M. Wang, M. Shen and L. Zhang, J. Colloid Interf. Sci., 2022, 608, 1676-1684.
- 11. S. Liu, X. F. Lu, J. Xiao, X. Wang and X. W. D. Lou, Angew. Chem. Int. Ed., 2019, 58, 13828-13833.
- 12. W.-W. Yuan, J.-X. Wu, X.-D. Zhang, S.-Z. Hou, M. Xu and Z.-Y. Gu, J. Mater. Chem. A, 2020, 8, 24486-24492.
- 13. L. Li, F. Cai, F. Qi and D.-K. Ma, J. Alloys Compd., 2020, 841, 155789.