Carbon dots enhanced peroxidase-like activity of platinum nanozyme

Cui Liu,^{*a*} Jiao Hu,^{*b*} Wenwen Yang,^{*c*,*d*} Jinyu Shi,^{*a*,*e*} Yiming Chen,^{*f*} Xing Fan,^{*g*} Wenhui Gao,^{*f*} Liangliang Cheng,^{*f*} Qing-Ying Luo,^{*c*,*} and Mingzhen Zhang ^{*f*,*}

^a Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China.

^b Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, P. R. China.

° School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China. Luoqingying@szpu.edu.cn

^d School of Life Sciences, Guizhou Normal University, Guiyang 550025, P. R. China.

^e School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P.R. China.

^f School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, P. R. China.

^g Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China

Experimental section

Synthesis of CDs: 1.6 g of carbon fibre powder was refluxed in 120 mL of HNO₃ and H_2SO_4 (V_{HNO_3} : $V_{H_2SO_4}$ =2:1) for 4 h. Then, the resulting solution was collected and neutralized with NaHCO₃ to the pH~3. The resultant solution containing CDs was first filtered by 0.22 µm BIOSHARP membrane filters and further dialyzed in a 3500-Da dialysis bag for 7 days.

Preparation of artificial urine sample: The artificial urine sample was prepared according to the previously report.¹ In short, L-lactic acid (1.1 mM), citric acid (2.0 mM), urea (170 mM), NH₄Cl (25 mM), CaCl₂·2H₂O (2.5 mM), NaCl (10 mM), NaHCO₃ (25 mM), K₂HPO₄ (7.0 mM), KH₂PO₄ (7.0 mM), MgSO₄(2.0 mM), and Na₂SO₄ (10 mM) were mixed in DI water.

Effect of metal ions on the catalytic activity of Pt@CDs: 50 μ L of H₂O₂ (2 mM in 0.33 M sodium acetate and 0.0166 M citric acid (buffer A for short)), 50 μ L of TMB (2 mM in 1 mM ethylenediaminetetraacetic acid disodium salt and 9.8 mM citric acid (buffer B for short)), 1 μ L of each kind of metal ion solution (1 mM) and 2.5 μ L of Pt@CDs were mixed and incubated at 40 °C for 10 min. The mixture was measured by the absorbance at 652 nm on a plate reader.

Detection of H_2O_2 *and dopamine (DA) in real samples*: The same protocol for H_2O_2 detection was applied in two commercial drinks, fresh orange juice and milk. A series of H_2O_2 solution with varying concentrations were added to a 1000-fold diluted orange juice or milk before analysis. The content of H_2O_2 were determined by the standard addition method. Similarly, the same protocol for DA detection was applied in a 1000-fold diluted serum. The contents of DA were determined by the standard addition method.

Mask ascorbic acid (AA) in dopamine detection: Briefly, AA solutions with different concentrations (30, 150, 300 μ M) were incubated with Cu²⁺ and EDTA. The concentrations of Cu²⁺ and EDTA were twice that of AA. The DA solution was treated

in the same way. Then, the same protocol for DA detection was applied. The absorbance at 652 nm was recorded. The absorbance variation ($\Delta A = A_{blank} - A$) of each group was calculated. A_{blank} and A represent the absorbance intensity of Pt@CDs + TMB + H₂O₂ system in the absence and presence of DA or interfering AA masked by Cu²⁺, respectively.

Morphological Characterization of Bacteria: Typically, PBS, Pt@CDs, H₂O₂ (100, μ M), Pt@CDs+ H₂O₂ (100 μ M) were added into 500 μ L of 10⁷ cfu/mL *E. coli*, then incubated for 3 h at 37 °C under 180-rpm shaking. The obtained samples were harvested by centrifugation at 3000 rpm for 10 min at 4 °C, and then washed with PBS. 2.5% glutaraldehyde solution was added to fix *E. coli* and the mixture was incubated at 4 °C for 4 h. Subsequently, different concentration of ethanol solution (30, 50, 70, 90, 100 %) were used for bacterial dehydration. The final samples were dipped onto clean silicon wafer and dried overnight. After sputtering deposition of Au, the samples were imaged by SEM (ZsrissSigma 300).

Supporting Figures

Fig. S1 The zeta potential of CDs, Re-CDs, and Pt@CDs.

Fig. S2 SEM images of PtNPs prepared in absence of CDs.

Fig. S3 Photograph of Re-CDs, Pt@CDs, PtNPs prepared in absence of CDs, and PtNPs prepared in the presence of PVP (PtNPs-PVP).

Fig. S4 Comparison of catalytic activities for TMB-H₂O₂ among Re-CDs,

Pt@CDs, PtNPs, and PtNPs-PVP.

Fig. S5 Comparison of catalytic activities for TMB-H₂O₂ between Pt@CDs and PtNPs-PVP-EG.

Fig. S6 The comparison of Pt@CDs-catalyzed H₂O₂ oxidization among various organic peroxidase substrates of TMB, ABTS, DAB, and OPD.

Fig. S7 Reaction-time curves of TMB oxidation reactions catalyzed by Pt@CDs,

PtNPs, PtNPs-PVP, PtNPs-PVP-EG, and Re-CDs as indicated.

Fig. S8 The C 1s high-resolution XPS with identification of peaks by curve fitting of CDs

Fig. S9 Effects of pH (a) and temperature (b) on the catalytic performance of Pt@CDs.

Fig. S10 Effects of various metal ions (10 μM) on the Pt@CDs-TMB-H_2O_2 reaction.

Fig. S11 Response of the Pt@CDs-TMB-H₂O₂ reaction toward DA and AA in the present of Cu^{2+} with twice the concentration of AA.

Fig. S12 Selectivity of the proposed assay for glucose. The concentrations of galactose, mannose, arabinose, fructose were 10 mM and the concentration of maltose was 5 mM, whereas the concentration of glucose was 1 mM.

Enzyme	Substrate	K_m (mM)	V_{max} (10 ⁻⁸ M/s)	Ref.
HRP	TMB	0.434	10.0	2
	H_2O_2	3.7	8.71	
PVP-PtNCs	TMB	0.031	11.53	3
	H_2O_2	78.31	23.79	
PVP/PtRu NZs	TMB	0.76	11.53	4
	H_2O_2	36.0	23.79	
BSA-PtNPs	TMB	0.217	15.4	5
	H_2O_2	68.4	28.7	
BSA/Pt-NPs	TMB	0.119	21.0	6
	H_2O_2	41.8	16.7	
Apoferritin-PtNPs	TMB	0.22	55.8	7
	H_2O_2	187.25	3.2×10^{4}	
NAC-Pt NCs	TMB	0.132	48.3	8
	H_2O_2	35.00	31.7	
Citric acid-RhPt	TMB	0.129	68.15	9
	H_2O_2	6.18	92.70	
Citrate-PtNPs	TMB	0.055	0.58	10
	H_2O_2	63	0.53	
DNA-Pt2.9	TMB	0.056	58.2	11
	H_2O_2	48.0	56.8	
DNA-Pt2.1	TMB	0.0329	11.9	11
	H_2O_2	74.4	30.5	
DNA-Pt1.8	TMB	0.0162	1.93	11
	H_2O_2	117.2	5.19	
Pt ₆₀₀ -GLP NCs	TMB	0.17	5.04	12
	H_2O_2	2.06	7.51	
Pt@CDs	TMB	0.061	11.8	This
	H_2O_2	26.5	9.1 ×10 ⁴	work

Table S1. Comparison of the K_m and V_{max} values of different Pt-based nanozymes.

	C=C	C-O	C=O	-COO
CDs	76.9%	9.9%	9.7%	3.5%
Re-CDs	77.1%	13.1%	5.8%	4.0%
Pt@CDs	78.2%	10.9%	7.7%	3.2%

Table S2. Relative content of different oxygen-containing functional groups (calculated by integrating fitting curve area of C 1s XPS).

Table S3. Determination of H_2O_2 in orange juice (n=3)

Sample	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	400.00	389.01	97.25	5.14
2	500.00	516.00	103.20	3.45
3	800.00	790.44	98.81	4.97

Table S4. Determination of H_2O_2 in milk (n=3)

Sample	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	200.00	194.89	97.45	6.68
2	400.00	407.11	101.78	6.37
3	1000.00	1009.33	100.93	4.58

Table S5. Determination of DA in serum (n=3)

Sample	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
1	125.00	125.69	100.55	4.97
2	150.00	152.61	101 74	2.06
Z	130.00	132.01	101.74	5.90
3	250.00	256.46	102.58	3.84

Reference:

- (1) Jiang, G.; Wang, J.; Yang, Y.; Zhang, G.; Liu, Y.; Lin, H.; Zhang, G.; Li, Y.; Fan, X. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. *Biosens. Bioelectron.* **2016**, *85*, 62-67.
- (2) Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.;
 Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. *Nat. Nanotechnol.* 2007, 2 (9), 577-583.
- (3) Liu, Y.; Qing, Y.; Jing, L.; Zou, W.; Guo, R. Platinum-copper bimetallic colloid nanoparticle cluster nanozymes with multiple enzyme-like activities for scavenging reactive oxygen species. *Langmuir* 2021, 37 (24), 7364-7372.
- (4) Park, Y.; Gupta, P. K.; Tran, V.-K.; Son, S. E.; Hur, W.; Lee, H. B.; Park, J. Y.; Kim, S. N.; Seong, G. H. PVP-stabilized PtRu nanozymes with peroxidase-like activity and its application for colorimetric and fluorometric glucose detection. *Colloid Surf. B-Biointerfaces* 2021, 204.
- (5) Chen, L.; Wang, N.; Wang, X.; Ai, S. Protein-directed in situ synthesis of platinum nanoparticles with superior peroxidase-like activity, and their use for photometric determination of hydrogen peroxide. *Microchim. Acta* 2013, *180* (15), 1517-1522.
- (6) Li, W.; Chen, B.; Zhang, H.; Sun, Y.; Wang, J.; Zhang, J.; Fu, Y. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. *Biosens. Bioelectron.* 2015, *66*, 251-258.
- (7) Fan, J.; Yin, J.-J.; Ning, B.; Wu, X.; Hu, Y.; Ferrari, M.; Anderson, G. J.; Wei, J.; Zhao, Y.; Nie, G. Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. *Biomaterials* **2011**, *32* (6), 1611-1618.
- (8) Li, X.; Huang, Q.; Li, W.; Zhang, J.; Fu, Y. N-acety-L-cysteine-stabilized Pt nanozyme for colorimetric assay of heparin. J. Anal. Test. 2019, 3 (3), 277-285.
- (9) Son, S. E.; Gupta, P. K.; Hur, W.; Lee, H. B.; Park, Y.; Park, J.; Kim, S. N.; Seong, G. H. Citric acid-functionalized rhodium-platinum nanoparticles as peroxidase mimics for determination of cholesterol. ACS Appl. Nano Mater. 2021, 4 (8), 8282-8291.

- (10) Moglianetti, M.; De Luca, E.; Pedone, D.; Marotta, R.; Catelani, T.; Sartori, B.; Amenitsch,
 H.; Retta, S. F.; Pompa, P. P. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. *Nanoscale* 2016, *8* (6), 3739-3752.
- (11) Fu, Y.; Zhao, X.; Zhang, J.; Li, W. DNA-based platinum nanozymes for peroxidase mimetics. J. Phys. Chem. C 2014, 118 (31), 18116-18125.
- (12) Lai, X.; Han, Y.; Zhang, J.; Zhang, J.; Lin, W.; Liu, Z.; Wang, L. Peroxidase-like platinum clusters synthesized by ganoderma lucidum polysaccharide for sensitively colorimetric detection of dopamine. *Molecules* **2021**, *26* (9), 2738.