Electronic Supplementary Information

Water-Stable Perovskite CsPb₂Br₅/CdSe Quantum Dots Based Photoelectrochemical Sensors for the Sensitive Determination of Dopamine

Gang Zhao, Xinhang Sun, Songyuan Li, Jiale Zheng, Junhui Liu*, and Mingju Huang*

Henan Joint International Research Laboratory of New Energy Materials and Devices,

School of Physics and Electronics, Henan University, Kaifeng 475004, China

* Corresponding author.

E-mail addresses: <u>liujh@henu.edu.cn</u> (J. Liu), <u>hmingju@163.com</u> (M. Huang).

Figure S1: (a-c) The TEM image of the CsPb₂Br₅/CdSe heterojunction.

Figure S2: (a-b) The SEM image of the perovskite CsPb₂Br₅.

Figure S3: (a-b) The TEM image of CdSe quantum dots.

Figure S4: (a) XRD pattern of CdSe. X-ray Photoelectron Spectroscopy (XPS) spectrum of (b) CsPb₂Br₅ and (c) CdSe.

Figure S5: Tauc plots for CsPb₂Br₅ and CdSe to determine their optical band gaps.

Figure S6: (a) PL spectrum of CdSe. (b) Cyclic voltammograms (CV) of CdSe, CsPb₂Br₅, and CsPb₂Br₅/CdSe in 0.1 M KCl solution containing 0.5 mM $[Fe(CN)_6]^{3-/4-}$. (c) Mott-Schottky plot of the CsPb₂Br₅/CdSe heterostructures.

Figure S7: In the presence or absence of dopamine, the photocurrent responses of (a) CsPb₂Br₅, (b) CsPb₂Br₅/CdSe, and (c) CdSe were measured in PBS solution.

Figure S8: (a) Photocurrent responses of $CsPb_2Br_5/CdSe$ heterojunctions with CdSe mass fractions of 2 wt%, 4 wt%, 6 wt%, 8 wt%, 10 wt%, and 12 wt%. (b) Photocurrent responses of a series of $CsPb_2Br_5/CdSe$ sensors in PBS with or without dopamine.

Figure S9: The electrode modified with CsPb₂Br₅/CdSe was tested in PBS solution containing dopamine to investigate the effects of (a) pH and (b) applied bias voltage.

Figure S10: Photocurrent response of the CsPbBr₃ photoelectrode.

Figure S11: (a) Photocurrent evolutions of the $CsPb_2Br_5/CdSe$ and $CsPb_2Br_5$ sensors stored for 15 days. (b) PEC response of the $CsPb_2Br_5/CdSe$ sensors for 2-weeks storage.

Figure S12: The SEM image of the perovskite $CsPb_2Br_5$ (a-b) before and (d-e) after staying in DA aqueous solution. The SEM images of the $CsPb_2Br_5/CdSe$ heterojunction (c) before and (f) after staying in DA aqueous solution. (g-i) The TEM images of the $CsPb_2Br_5/CdSe$ heterojunction after exposure to the DA environment.

Figure S13: XRD pattern of (a) the $CsPb_2Br_5/CdSe$ heterojunction and (b) the perovskite $CsPb_2Br_5$ before/after staying in DA aqueous solution. XPS spectrum of (c) the $CsPb_2Br_5/CdSe$ heterojunction and (d) the perovskite $CsPb_2Br_5$ before/after exposure to the DA environment.

Method	Linear range (µM)	LOD (µM)	References
PEC	0.1-250	0.012	1
PEC	0.3-750	0.022	2
PEC	5-200 and 200-5000	2	3
PEC	0.05-20	0.016	4
PEC	0.5-20 and 20-4000	0.15	5
DPV	1-200	0.6	6
DPV	1-500	0.22	2
DPV	0.5-78	0.11	7
CV	0-2000	4.7	8
CV	1-90 and 110-350	0.03	9
CV	0.05-35	0.04	10
PL	0-340	3.6	11
PL	10-200 and 500-5000	0.022	12
PL	0.1-50	0.01	13
SWV	0.001-1000	0.00033	14
SWV	10-180	25.4	15
SWV	62.5-603	33.3	16
PEC	0.4-303.9	0.0124	This work

 Table S1: Comparison of different sensors for dopamine detection.

No.	Added (µM)	Found (µM)	Recovery (%)	RSD (%, n=3)
1	1	0.92	92.0	2.3
2	5	4.69	93.8	1.6
3	20	20.62	103.1	3.0
	- 0		~ ~ ~ ~ ~	•
4	50	47.52	95.04	3.6
_	200	200.0	100.45	1.2
5	200	200.9	100.45	1.3

Table S2: Detection of dopamine in human serum by $CsPb_2Br_5/CdSe$ sensor.

References

- 1. X. Chen, D. Li, G. Pan, D. Zhou, W. Xu, J. Zhu, H. Wang, C. Chen and H. Song, *Nanoscale*, 2018, **10**, 10505-10513.
- 2. N. Ahmadi, M. Bagherzadeh and A. Nemati, *Biosensors and Bioelectronics*, 2020, **151**.
- 3. P. Gao, H. Ma, J. Yang, D. Wu, Y. Zhang, B. Du, D. Fan and Q. Wei, *New Journal of Chemistry*, 2015, **39**, 1483-1487.
- 4. C. Qin, X. Bai, Y. Zhang and K. Gao, *Mikrochim Acta*, 2018, **185**, 278.
- 5. J. Qiao, Y. Wang, S. Dong, Q. Liang and S. Shao, ACS Applied Nano Materials, 2023, 6, 5664-5674.
- 6. X. Ji, X. Zhao, Z. Zhang, Y. Si, W. Qian, H. Fu, Z. Chen, Z. Wang, H. Jin, Z. Yang and D. He, *Nano Research*, 2023, **16**, 6361-6368.
- 7. C. Li, Y. Cai, J. Hu, J. Liu, H. Dai, Q. Xu, C. Zhang, X. Zhang, K. Liu, M. L. Kosinova, T. Goto, R. Tu and S. Zhang, *ACS Applied Materials & Interfaces*, 2023, **15**, 27399-27410.
- 8. S. Paulo-Mirasol, C. Izquierdo, C. Alemán, E. Armelin and J. Torras, *Applied Surface Science*, 2023, **626**, 157241.
- 9. M. Hasheena, A. Ratnamala, M. Noorjahan, G. D. Reddy, K. Shiprath, H. Manjunatha and K. C. B. Naidu, *Applied Physics A*, 2022, **128**.
- 10. Y. Shoja, N. Isoaho, V. Jokinen and S. Franssila, *Applied Surface Science*, 2022, **573**, 151444.
- 11. M. Chatterjee, P. Nath, S. Kadian, A. Kumar, V. Kumar, P. Roy, G. Manik and S. Satapathi, *Scientific Reports*, 2022, **12**.
- 12. H. Zakaria, R. El Kurdi and D. Patra, *RSC Advances*, 2022, **12**, 28245-28253.
- 13. Q. Wang, K. Zheng, W. Zhang and M.-J. Li, *Journal of Inorganic Biochemistry*, 2022, 234, 111902.
- 14. A. B. Urgunde, A. Dhamija and R. Gupta, *Chemistry An Asian Journal*, 2021, **17**.
- 15. S. E. Elugoke, O. E. Fayemi, A. S. Adekunle, B. B. Mamba, T. T. I. Nkambule and E. E. Ebenso, *FlatChem*, 2022, **33**, 100372.
- 16. H. N. Yu, Y. C. Pang and J. Y. Tang, *International Journal of Electrochemical Science*, 2015, **10**, 8353-8360.