Electronic supplementary information

Continuous Production of Bimetallic Nanoparticles on Carbon Nanotubes Based on 3D-Printed Microfluidics

Bo Liu,^{a,b} Jing Jin,*^b Bin Ran,^b Chaozhan Chen,^b Jiaqian Li^a, Ning Qin^a and Yonggang Zhu*^b

^a School of Energy and Power Engineering, Shandong University, Jinan, 250061, China

^b School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China

*Corresponding authors. E-mail: jinjing2020@hit.edu.cn (J. Jin), zhuyonggang@hit.edu.cn (Y. Zhu)

Contents

1. Tensile test specimen of 3D printed material2
2. Microfluidic synthesis conditions for MWCNTs/Pt-Pd
3. Stress-strain curve of tensile test for 3D printed material4
4. 3D printing workflow of design and fabrication for 3D micromixer5
5. Micro-CT scan of the micromixer I
6. Mixing performance of micromixer I7
7. Comparison of synthesis throughout for nanoparticles
8. TEM images of MWCNTs/Pd-Pt at different precursor flow rate ratios
9. TEM images of MWCNTs/Pd-Pt at different Pt ⁴⁺ flow rate ratios10
10. Comparison of electrochemical performance between modified electrodes11
11. Reproducibility of GCE/MWCNTs/Pt-Pd12
12. Reference

1. Tensile test specimen of 3D printed material

Fig. S1 Tensile test specimen of 3D printed material. (a) Dimensions of the tensile test specimen; (b) 3D printed specimen for the tensile test.

2. Microfluidic synthesis conditions for MWCNTs/Pt-Pd

Item	Flow rate ratio of precursor $(Q_{\rm A}:Q_{\rm B})$	Flow rate ratio of micromixer I $(Q_{A+B}:Q_C)$	Reduction concentration ratio $(C_{\rm E}:C_{\rm C})$	Total flow rate (mL min ⁻¹)
<i>TFR</i> : 1	1:1	1:1	4	1
<i>TFR</i> : 5	1:1	1:1	4	5
<i>TFR</i> : 10	1:1	1:1	4	10
<i>TFR</i> : 15	1:1	1:1	4	15
<i>PFRR</i> :0.1	1:1	1:9	4	5
PFRR:0.3	1:1	3:7	4	5
PFRR:0.5	1:1	1:1	4	5
PFRR:0.7	1:1	7:3	4	5
PFRR:0.9	1:1	9:1	4	5
<i>Pt-FRR</i> : 0	0:1	1:1	4	5
<i>Pt-FRR</i> : 0.3	3:7	1:1	4	5
<i>Pt-FRR</i> : 0.5	1:1	1:1	4	5
<i>Pt-FRR</i> : 0.7	7:3	1:1	4	5
<i>Pt-FRR</i> : 1	1:0	1:1	4	5

 Table S1 Microfluidic synthesis conditions for MWCNTs/Pt-Pd.

3. Stress-strain curve of tensile test for 3D printed material

Fig. S2 Stress-strain curve of tensile test for 3D printed material.

4. 3D printing workflow of design and fabrication for 3D micromixer

Fig. S3 3D printing workflow of design and fabrication for 3D micromixer.

5. Micro-CT scan of the micromixer I

Fig. S4 Micro-CT scan of the micromixer I with different cross-sections.

6. Mixing performance of micromixer I

Fig. S5 Mixing performance of micromixer I. (a) Mixing efficiency of micromixer I with different flow rates; (b) The microscope fluorescein images at the outlet of micromixer I with different flow rates.

7. Comparison of synthesis throughout for nanoparticles

Туре	Fabricated material	Flow rate (mL min ⁻¹)	Synthesized material	Ref.
Y-shaped micromixer	PDMS	0.05~2	Ag NPs	[1]
T-shaped microreactor	PDMS	0.1	SnS NPs	[2]
Cross-shaped micromixer	PTFE	1	Pt/TiO ₂	[3]
Cross-type mixer	PTFE	0.5~1.5	Ag/rGO	[4]
Spiral microreactor	PDMS	0.035~0.35	MNPs@ SiO ₂	[5]
Spiral microreactor	PDMS	0.1~0.53	ZnO NPs	[6]
Droplet reactor	PDMS	0.008~0.02	SiO ₂ NPs	[7]
Active microreactor	PDMS	0.1~0.5	Chitosan NPs	[8]
T-shaped micromixer	PDMS	1.5	Ag ₂ S NPs	[9]
Y-shaped micromixer	PDMS	0.17~1.7	Fe ₃ O ₄ NPs	[10]
Droplet reactor	PDMS	~0.14	Au NPs	[11]
Y-shaped micromixer	PEEK	~0.15	CuS NPs	[12]
Droplet reactor	PDMS	0.01~0.025	TiO ₂ NPs	[13]
Focusing microreactor	PDMS	0.01~0.013	Organic NPs	[14]
T-shaped micromixer	PTFE	0.7	MOF capsule	[15]
Acoustic micromixer	PDMS	0.01~0.05	Budesonide NPs	[16]
3D micromixer	Resin	1~15	MWCNTs/Pt-Pd	This study

Table S2 Comparison of synthesis throughout for nanoparticles between different micromixers/microreactors.

8. TEM images of MWCNTs/Pd-Pt at different precursor flow rate ratios

Fig. S6 TEM images of MWCNTs/Pd-Pt at different precursor flow rate ratios (*PFRR*), (a) 0.1, (b) 0.3, (c) 0.5, and (d) 0.7.

9. TEM images of MWCNTs/Pd-Pt at different Pt⁴⁺ flow rate ratios

Fig. S7 TEM images of MWCNTs/Pd-Pt at different Pt^{4+} flow rate ratios (*Pt-FRR*), (a) 0.3, (b) 0.5, (c) 0.7, and (d) 1.

10. Comparison of current responses between modified electrodes

Fig. S8 Comparison of current responses of GCE, GCE/MWCNTs and GCE/MWCNTs/Pt-Pd under the optimized conditions.

11. Reproducibility of GCE/MWCNTs/Pt-Pd

Fig. S9 Current responses of five different GCE/MWCNTs/Pt-Pd to 100 μ M H₂O₂ in 0.1 M PBS (pH 7.4).

12. Reference

- Z. Yang, L. Dong, M. Wang, Y. Jia, C. Wang, P. Li, G. Liu, Sensors and Actuators a-Physical 2022, 346.
- [2] V. Katoch, M. Singh, A. Katoch, B. Prakash, *Materials Letters* 2023, 333.
- [3] L. Luo, M. Yang, G. Chen, *Chemical Engineering Science* 2022, 251.
- [4] S. Tao, M. Yang, H. Chen, G. Chen, *Acs Sustainable Chemistry & Engineering* **2018**, 6, 8719.
- [5] N. Hao, Y. Nie, T. Shen, J. X. J. Zhang, *Lab on a Chip* **2018**, 18, 1997.
- [6] N. Hao, Z. Xu, Y. Nie, C. Jin, A. B. Closson, M. Zhang, J. X. J. Zhang, Chemical Engineering Journal 2019, 378.
- [7] R. S. Pessoa, H. S. Maciel, G. Petraconi, M. Massi, A. S. da Silva Sobrinho, *Applied Surface Science* 2008, 255, 749.
- [8] V. Kamat, I. Marathe, V. Ghormade, D. Bodas, K. Paknikar, Acs Applied Materials & Interfaces 2015, 7, 22839.
- [9] B. Prakash, V. Katoch, A. Shah, M. Sharma, M. M. Devi, J. J. Panda, J. Sharma, A. K. Ganguli, *Photochemistry and Photobiology* 2020, 96, 1273.
- [10] T. Vu Thi, M. An Ngoc, T. Le The, T. Hoang Van, T. Phung Thi, T. Bui Quang, T. Nguyen Tran, L. Tran Dai, *Journal of Electronic Materials* 2016, 45, 2576.
- [11] S. Abalde-Cela, P. Taladriz-Blanco, M. G. de Oliveira, C. Abell, *Scientific Reports* 2018, 8.
- [12] I. Ortiz de Solorzano, M. Prieto, G. Mendoza, T. Alejo, S. Irusta, V. Sebastian, M. Arruebo, Acs Applied Materials & Interfaces 2016, 8, 21545.
- [13] P. Stolzenburg, T. Lorenz, A. Dietzel, G. Garnweitner, *Chemical Engineering Science* 2018, 191, 500.
- [14] V. Genot, S. Desportes, C. Croushore, J.-P. Lefevre, R. B. Pansu, J. A. Delaire, P. R. von Rohr, *Chemical Engineering Journal* 2010, 161, 234.
- [15] R. Ameloot, F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, *Nature Chemistry* 2011, 3, 382.
- [16] L. Nguyen Hoai An, P. Hoang Van, J. Yu, H.-K. Chan, A. Neild, T. Alan, International Journal of Nanomedicine 2018, 13, 1353.