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Figure S1. Initial atomic structures of (a) FUS37-42 (PDB ID: 5XSG), (b) FUS54-59 (PDB ID: 
5XRR), (c) Aβ16-21 (PDB ID: 3OW9) and (d) Tau306-311 (PDB ID: 2ON9) fibrils.
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Figure S2. (a) collapse degree and fluctuation of SASA of FUS37−42, FUS54−59, Aβ16−21 and 
Tau306−311 coarse-grained oligomer systems using α values of 0.2, 0.4, 0.6, 0.65 and 0.8. Results 
are from a 600-ns long CG-MD simulation for each system. (b-c) The final snapshots of the 
simulations at different α values for (b) FUS37−42 and (c) FUS54−59 peptide systems. (d-e) The 
final snapshots of the simulations for Aβ16−21 and Tau306−311 systems from 600-ns long CG-MD 
simulations. (f) The final snapshots of the four systems from 6.0-μs-long simulations are shown 
for comparison. 
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Figure S3. The collapse degree and SASA fluctuation parameters of the four peptides predicted 
by (a) all-atom and (b) coarse-grained simulations starting from 6 randomly dispersed peptide 
chains. 

Figure S4. The rate of sidechain dihedral angle (χ1) transition between the Cγ−exo and Cγ−endo 
conformations in the fibril and oligomer systems.

Figure S5. The definitions of the dihedral angles for parallel and antiparallel β-strands.
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Figure S6. Time evolution of mainchain-mainchain (MC-MC) and sidechain-sidechain (SC-
SC) contacts in the five individual simulations for the Aβ16−21 systems.

Figure S7. Intermolecular residue-wise (a) total contacts and (b) MC-MC contacts of the four 
systems. The grey bar charts show the cumulative contact numbers between each residue and 
other residues.
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Figure S8. Intermolecular residue-wise (a) total H-bonds and (b) SC-SC H-bonds of the four 
systems. The grey bar charts show the cumulative H-bond numbers between each residue and 
other residues.

Figure S9. Intermolecular π-π stacking in (A) FUS37-42, (B) FUS54-59, (C) Aβ16-21 and (D) 
Tau306-311 all-atom oligomer systems. (E) Probabilities of different patterns of π-π stacking in 
the four systems.



 7 / 8

Figure S10. The averaged correlation coefficients between ϕ and χ1, and those between ψ and 
χ1 for each amino acid in the four fibril systems.

Figure S11. The averaged correlation coefficients between ϕ and χ1, and those between ψ and 
χ1 for each amino acid in the four oligomer systems.

Figure S12. Number of H-bond between sidechain of each residue and water molecules in the 
four oligomer systems.



 8 / 8

Figure S13. The cross-sections of the aggregates formed by the four peptides showing the 
contribution of water molecules in the assembly of these peptides.


