Supporting Information

Elucidating the Reversible and Irreversible Self-assembly Mechanisms of Low-Complexity Aromatic-Rich Kinked Peptides and Steric Zipper Peptides

Zenghui Lao^{‡a}, Yiming Tang^{‡a}, Xuewei Dong^b, Yuan Tan^a, Xuhua Li^c, Xianshi Liu^a, Le Li^a, Cong Guo^{*d}, and Guanghong Wei^{*a}

 a. Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.

E-mail: ghwei@fudan.edu.cn

- b. Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
- d. Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China.
 E-mail: congguo@shu.edu.cn

There are 13 supplementary figures.

Figure S1. Initial atomic structures of (a) FUS_{37-42} (PDB ID: 5XSG), (b) FUS_{54-59} (PDB ID: 5XRR), (c) $A\beta_{16-21}$ (PDB ID: 3OW9) and (d) $Tau_{306-311}$ (PDB ID: 2ON9) fibrils.

Figure S2. (a) collapse degree and fluctuation of SASA of FUS_{37–42}, FUS_{54–59}, A β_{16-21} and Tau_{306–311} coarse-grained oligomer systems using α values of 0.2, 0.4, 0.6, 0.65 and 0.8. Results are from a 600-ns long CG-MD simulation for each system. (b-c) The final snapshots of the simulations at different α values for (b) FUS_{37–42} and (c) FUS_{54–59} peptide systems. (d-e) The final snapshots of the simulations for A β_{16-21} and Tau_{306–311} systems from 600-ns long CG-MD simulations. (f) The final snapshots of the four systems from 6.0-µs-long simulations are shown for comparison.

Figure S3. The collapse degree and SASA fluctuation parameters of the four peptides predicted by (a) all-atom and (b) coarse-grained simulations starting from 6 randomly dispersed peptide chains.

Figure S4. The rate of sidechain dihedral angle (χ_1) transition between the C^{γ}-exo and C^{γ}-endo conformations in the fibril and oligomer systems.

Figure S5. The definitions of the dihedral angles for parallel and antiparallel β -strands.

Figure S6. Time evolution of mainchain-mainchain (MC-MC) and sidechain-sidechain (SC-SC) contacts in the five individual simulations for the $A\beta_{16-21}$ systems.

Figure S7. Intermolecular residue-wise (a) total contacts and (b) MC-MC contacts of the four systems. The grey bar charts show the cumulative contact numbers between each residue and other residues.

Figure S8. Intermolecular residue-wise (a) total H-bonds and (b) SC-SC H-bonds of the four systems. The grey bar charts show the cumulative H-bond numbers between each residue and other residues.

Figure S9. Intermolecular π - π stacking in (A) FUS₃₇₋₄₂, (B) FUS₅₄₋₅₉, (C) A β_{16-21} and (D) Tau₃₀₆₋₃₁₁ all-atom oligomer systems. (E) Probabilities of different patterns of π - π stacking in the four systems.

Figure S10. The averaged correlation coefficients between ϕ and χ_1 , and those between ψ and χ_1 for each amino acid in the four fibril systems.

Figure S11. The averaged correlation coefficients between ϕ and χ_1 , and those between ψ and χ_1 for each amino acid in the four oligomer systems.

Figure S12. Number of H-bond between sidechain of each residue and water molecules in the four oligomer systems.

Figure S13. The cross-sections of the aggregates formed by the four peptides showing the contribution of water molecules in the assembly of these peptides.