Supporting Information for

Electrocatalytic nitrate-to-ammonia conversion on CoO/CuO nanoarray through Zn-nitrate battery

Shanshan Chen^a, Gaocan Qi^{b*}, Ruilian Yin^c, Qian Liu^d, Ligang Feng^e, Xincai Feng^f,

Guangzhi Hug, Jun Luof, Xijun Liuh*, and Wenxian Liuc*

^a Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

^b School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

^c College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

^d Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.

^e School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.

^f ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China.

^g Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science Yunnan University, Kunming 650091, China.

^h State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

1

Authors to whom correspondence should be addressed: gaocanqi@tjut.edu.cn;

xjliu@gxu.edu.cn; liuwx@zjut.edu.cn

Figures and Table

Fig. S1 Photograph of different samples.

Fig. S2 SEM images of CF.

Fig. S3 EDX spectrum of CoO/CuO-NA/CF.

Fig. S4 XRD patterns of CF, CuO-NA/CF, and CoO/CuO-NA/CF.

Fig. S5 XRD patterns of Co-Cu(OH) $_2$ and CoO/CuO-NA/CF.

Fig. S6 XPS survey spectrum of CF, CuO-NA/CF, and CoO/CuO-NA/CF.

Fig. S7 (a) XPS spectra in O 1s region and (b) Cu LMM auger XPS spectra of CF, CuO-NA/CF, and CoO/CuO-NA/CF.

Fig. S8 EIS measurements of CF, CuO-NA/CF, and CoO/CuO-NA/CF.

Fig. S9 ECSA measurements of CF, CuO-NA/CF, and CoO/CuO-NA/CF.

Fig. S10 LSV curves CoO/CuO-NA/CF in 0.5 M NaOH with and without 250 ppm NO_3^{-} -N.

Fig. S11 (a) The concentration-absorbance calibration curves of NH_3 . (b) The calibration curves show good linearity.

Fig. S12 Chronoamperometry curves for CoO/CuO-NA/CF in Ar-saturated 0.5 M NaOH electrolytes containing 250 ppm NO_3^- -N.

Fig. S13 $\rm NO_3^-$ to $\rm NH_3$ conversion $\rm FE_{\rm NH3}$ and $\rm NH_3$ yield for CoO/CuO-NA/CF.

Fig. S14 (a) Chronoamperometry curves of CoO/CuO-NA/CF. (b) UV-Vis absorption spectra and (c) Q values for electrogenerated NH_3 during recycling tests at -0.2 V vs. RHE.

Fig. S15 ¹H NMR spectra ${}^{14}NH_4{}^+{}^{-14}N$ with different concentrations.

Fig. S16 Chronoamperometry curves (a) and FE_{NH3} and yield of NH₃ (b) for CuO-NA/CF-based Zn-NO₃⁻ battery at in Ar-saturated 0.5 M NaOH electrolytes containing 500 ppm NO₃⁻-N.

Fig. S17 LSV curves of OER for CuO-NA/CF and CoO/CuO-NA/CF.

Catalyst	Power density (mW cm ⁻²)	FE (%)	NH ₃ yield	Rechargeability	Ref.
CoO/CuO-NA/CF	4.3	82.0	$60.3 \ \mu mol \ h^{-1} \ cm^{-2}$	Yes	This work
Pd/TiO ₂	0.87	81.3	$32 \text{ mmol } h^{-1} \text{ cm}^{-2}$	No	[2]
NiCo ₂ O ₄ /CC	3.94	96.1	48.5 μ mol h ⁻¹ cm ⁻²	No	[1]
ZnCo ₂ O ₄ NSA/CC	4.62	90	91.75 μ mol h ⁻¹ cm ⁻²	No	[3]
Co ₂ AlO ₄ /CC	3.43	95	$750 \ \mu g \ h^{-1} \ cm^{-2}$	No	[4]
CeO _{2-x} @NC/GP	3.44	96.09	145.08 μmol h ⁻¹ cm ⁻²	No	[5]
Fe/Ni ₂ P	3.25	85	22.6 μ mol cm ⁻² h ⁻¹	Yes	[6]
Co ₂ B@Co ₃ O ₄ /TM	3.21	97.2	$0.74 \text{ mg h}^{-1} \text{ cm}^{-2}$	No	[7]
MP-Cu	7.56	93	76 μ mol cm ⁻² h ⁻¹	No	[8]
NiCoBDC	3.66	99.4%	66.2 μ mol h ⁻¹ cm ⁻²	No	[9]
CoNi-Vp-1.0	1.05	76.23 %	12.227 μ mol h ⁻¹ cm ⁻²	No	[10]

Table S1 Comparison of NH_3 yield and power density of our battery with other Zn- NO_3^- battery systems.

References

- Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, I. Shakir, P. O. Agboola, Q. Kong, Q. Wang, D. Ma and X. Sun, *Small*, 2022, 18, 2106961.
- Y. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong and C. Zhi, Energy Environ. Sci., 2021, 14, 3938-3944.
- Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang, Y. Ren, L. Yue, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Y. Luo, Q. Kong and X. Sun, *Materials Today Physics*, 2022, 23, 100619.
- Z. Deng, J. Liang, Q. Liu, C. Ma, L. Xie, L. Yue, Y. Ren, T. Li, Y. Luo, N. Li, B. Tang, A. Ali Alshehri, I. Shakir, P. O. Agboola, S. Yan, B. Zheng, J. Du, Q. Kong and X. Sun, *Chem. Eng. J.*, 2022, 435, 135104.
- Z. Li, Z. Deng, L. Ouyang, X. Fan, L. Zhang, S. Sun, Q. Liu, A. A. Alshehri,
 Y. Luo, Q. Kong and X. Sun, *Nano Res.*, 2022, 15, 8914-8921.
- R. Zhang, Y. Guo, S. Zhang, D. Chen, Y. Zhao, Z. Huang, L. Ma, P. Li, Q. Yang, G. Liang and C. Zhi, *Adv. Energy Mater.*, 2022, 12, 2212236.
- L. Xie, S. Sun, L. Hu, J. Chen, J. Li, L. Ouyang, Y. Luo, A. A. Alshehri, Q. Kong, Q. Liu and X. Sun, ACS Appl. Mater. Interfaces., 2022, 14, 49650-49657.
- W. Wen, P. Yan, W. Sun, Y. Zhou and X. Y. Yu, *Adv. Funct. Mater.*, 2022, 33, 2212236.
- J. Ma, Y. Zhang, B. Wang, Z. Jiang, Q. Zhang and S. Zhuo, ACS Nano, 2023, 17, 6687-6697.
- Y. Gao, K. Wang, C. Xu, H. Fang, H. Yu, H. Zhang, S. Li, C. Li and F. Huang, *Appl. Catal. B.*, 2023, **330**, 122627.