Supporting Information

Motif for B/O-sites modulation in LaFeO₃ towards boosted oxygen evolution

Wenli Kang^a, Zhishan Li^a*, Jinsong Wang^b, Shaopeng Wu^a, Yiguang Gai^a, Guanghao Wang^a, Zhouhang Li^a, Xing Zhu^a, Tao Zhu^a, Hua Wang^a, Kongzhai Li^a*, Chundong Wang^c

^a Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China

^b Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, PR China

^c School of Intergrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China

Fig. S1. Detail experiment procedures for fabrication of $LaFe_{1-x}Ni_xO_{3-\delta}$ electrocatalysts with different Ni-concentration synthesized at 600°C.

Fig. S2. SEM and EDS of (a) $LaFeO_{3-\delta}$, (b) $LaFe_{0.75}Ni_{0.25}O_{3-\delta}$, (c) $LaFe_{0.5}Ni_{0.5}O_{3-\delta}$, (d) $LaFe_{0.25}Ni_{0.75}O_{3-\delta}$, (e) $LaNiO_{3-\delta}$, and (f) $LaFe_{0.5}Ni_{0.5}O_{3-\delta}/N$ catalysts (Inset is the corresponding element atoms percentage).

Fig. S3. Nitrogen adsorption-desorption hysteresis curve of (a) LaFeO_{3-δ}, (b) LaFe_{0.5}Ni_{0.5}O_{3-δ},
(c) LaFe_{0.5}Ni_{0.5}O_{3-δ}/N catalysts (inset is the corresponding BJH pore size distribution curves).

Fig. S4. TEM image of LaFe_{0.5}Ni_{0.5}O_{3-δ}.

Fig. S5. HRTEM image of $LaFe_{0.5}Ni_{0.5}O_{3-\delta}$ and the corresponding elemental mapping images of La, Fe, Ni, O.

Fig. S6. (a) X-ray photoemission survey spectra of $LaFeO_{3-\delta}$, $LaFe_{0.5}Ni_{0.5}O_{3-\delta}$ and $LaFe_{0.5}Ni_{0.5}O_{3-\delta}/N$. (b-c) X-ray photoemission spectra of $LaFe_{0.5}Ni_{0.5}O_{3-\delta}$ and $LaFe_{0.5}Ni_{0.5}O_{3-\delta}$ and $LaFe_{0.5}Ni_{0.5}O_{3-\delta}$. δ/N . Each panel are corresponding binding energy range to (b) La3d & Ni2p and (c) N1s.

Fig. S7. (a-c) X-ray photoemission spectra of LaFeO_{3- δ}. Each panel are corresponding binding energy range to (a) Fe 2p, (b) La 3d and (c) O 2p.

Fig. S8. CV measurements at different scan rates in a non-faradic current region with the scan interval of 100 mV s⁻¹ for (a) LaFeO_{3- δ}, (b) LaFeO_{1.75}Ni_{0.25}O_{3- δ}, (c) LaFeO_{1.5}Ni_{0.5}O_{3- δ}, (d) LaFeO_{1.25}Ni_{0.75}O_{3- δ}, (e) LaNiO_{3- δ}, and (f) LaFeO_{1.5}Ni_{0.5}O_{3- δ}/N catalysts.

Fig. S9 Comparison of LSV polarization curves of sample $LaFe_{0.5}Ni_{0.5}O_{3-\delta}/N$ with and without acetylene black.

Element	La /wt%	Fe /wt%	Ni /wt%	O/wt%	N /wt%
LaFeO _{3-ð}	20.99%	20.78%	\	58.23%	١
LaFe _{0.75} Ni _{0.25} O _{3-ð}	20.61%	16.84%	5.05%	57.50%	١
LaFe _{0.5} Ni _{0.5} O _{3-ð}	20.89%	15.66%	16.78%	55.67%	١
LaFe _{0.25} Ni _{0.75} O _{3-ð}	22.26%	5.62%	16.39%	55.73%	١
LaNiO _{3-ð}	21.69%	\	22.31%	56.00%	١
LaFe _{0.5} Ni _{0.5} O _{3-δ} /N	23.27%	14.17%	14.60%	42.92%	5.04%

Table S1. Atoms ratios of the $LaFe_{1-x}Ni_xO_{3-\delta}$ (x = 0, 0.25, 0.5, 0.75, 1) and $LaFe_{0.5}Ni_{0.5}O_{3-\delta}/N$ derived from EDS analysis.

Table S2. The details of the standard crystal planes of the reported materials.

Materials	Crystal planes (h k l)	d (Å)	2θ (°)	Intensity (a.u.)
LaFe _{0.5} Ni _{0.5} O ₃	020	2.7356	32.710	31.7
	110	3.8852	22.871	18.5

Element	Electrocatalysts			
(Atomic %)	LaFeO _{3-ð}	LaFe _{0.5} Ni _{0.5} O _{3-δ}	LaFe _{0.5} Ni _{0.5} O ₃₋₀ /N	
La 3d	9.15	9.54	8.93	
Fe 2p	8.06	5.84	6.11	
Ni 2p	\	6.01	6.65	
O 1s	37.33	35.04	30.43	
N 2s	\	\	2.35	
C 1s	45.46	43.57	45.53	

Table S3. Atoms ratios of the LaFeO_{3- δ}, LaFe_{0.5}Ni_{0.5}O_{3- δ}, and LaFe_{0.5}Ni_{0.5}O_{3- δ}/N derived from XPS analysis.

Table S4. O 1s XPS deconvolution results of the LaFeO_{3- δ}, LaFe_{0.5}Ni_{0.5}O_{3- δ}, and LaFe_{0.5}Ni_{0.5}O_{3- δ}/N.

Element	H ₂ O	OH- or O ₂	O_2^{2-} or O^-	Lattice O ²⁻
LaFeO _{3-ð}	25.55%	48.93%	18.69%	6.83%
LaFe _{0.5} Ni _{0.5} O _{3-ð}	18.33%	29.47%	21.16%	31.05%
LaFe _{0.5} Ni _{0.5} O _{3-ð} /N	15.43%	25.59%	28.80%	30.17%

Catalysts	Overpotential@10 mA cm ⁻² (mV)	Tafel (mV dec ⁻¹)	References
LaFe _{0.5} Ni _{0.5} O _{3-δ}	281.4	75	This work
LaFe _{0.5} Ni _{0.5} O _{3-δ} /N	270.6	65	This work
LaFe _{0.2} Ni _{0.8} O ₃	420	89	1
3D microporous LaFe _{0.8} Co _{0.2} O ₃	410	56	2
La _{0.5} Sr _{0.5} Ni _{0.4} Fe _{0.6} O ₃₋₈	342	85	3
$SrNb_{0.1}Co_{0.7}Fe_{0.2}O_{3-\delta}$	370	48	4
NdBaMn ₂ O _{5.5}	370	75	5
LaNi _{0.8} Fe _{0.2} O ₃₋₈ -NR	302	50	6
PrBaCo ₂ O _{5.75}	360	70	7
LaNi _{0.96} Ir _{0.04} O ₃	280	62	8
LaCoO ₃ /N-rGO	560	65	9
LaNiO ₃ /NiO	346	73	10
$BaCo_{0.4}Fe_{0.4}Zr_{0.1}Y_{0.1}O_{3-\delta}$	324	69	11
La ₂ NiMnO ₆	370	58	12

Table S5. OER activities of perovskite oxides.

References

- D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li and J. B. Goodenough, J. Mater. Chem. A, 2015, 3, 9421-9426.
- [2] J. Dai, Y. Zhu, Y. Zhong, J. Miao, B. Lin, W. Zhou and Z. Shao, Adv. Mater. Interfaces, 2018, 6, 1801317.
- [3] C. C. Wang, Y. Cheng, E. Ianni, S. P. Jiang and B. Lin, *Electrochim. Acta*, 2017, 246, 997-1003.

- [4] Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu and Z. Shao, Adv. Energy Mater., 2016, 7, 1602122.
- [5] C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai, L. Peng, Y. Huang, J. Jiang, Y. Huang, L. Zhang and J. Xie, *Energy Storage Mater.*, 2017, 8, 161-168.
- [6] H. Wang, J. Wang, Y. Pi, Q. Shao, Y. Tan and X. Huang, *Angew. Chem. Int. Ed.*, 2019, 58, 2316-2320.
- [7] X. Miao, L. Wu, Y. Lin, X. Yuan, J. Zhao, W. Yan, S. Zhou and L. Shi, *Chem. Commun.*, 2019, 55, 1442-1445.
- [8] J. Li, L. Zheng, B. Huang, Y. Hu, L. An, Y. Yao, M. Lu, J. Jin, N. Zhang, P. Xi and C. H. Yan, *Small*, 2022, 18, 2204723.
- [9] K. Liu, J. Li, Q. Wang, X. Wang, D. Qian, J. Jiang, J. Li and Z. Chen, J. Alloys Compd., 2017, 725, 260-269.
- [10]Y. Wei, Y. Zheng, Y. Hu, B. Huang, M. Sun, P. Da, P. Xi and C. H. Yan, ACS Appl. Mater. Interfaces, 2022, 14, 25638-25647.
- [11]X. Li, J. Zhang, Q. Feng, C. Pu, L. Zhang, M. Hu, X. Zhou, X. Zhong, W. Yi, J. Tang, Z. Li, X. Zhao, H. Li and B. Xu, *J. Mater. Chem. A*, 2018, 6, 17288-17296.
- [12]Y. Tong, J. Wu, P. Chen, H. Liu, W. Chu, C. Wu and Y. Xie, *J. Am. Chem. Soc.*, 2018, 140, 11165-11169.