Supplementary information Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles

Samith Hettiarachchi,¹Lingxi Ouyang,¹ Haotian Cha,¹ Helena H.W.B. Hansen,¹ Nam-Trung Nguyen ^{1*} and Jun Zhang ^{1*}

¹ Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia. E-mail: nam-trung.nguyen@griffith.edu.au, jun.zhang@griffith.edu.au

Fig. S1. CAD design of the co-flow microfluidic device.

Fig S2. Time-lapse images of the flow oscillation in 5,000 ppm PEO concentration for 100 nm particles (pseudo-coloured red) at the cross junction of the microfluidic device. (a) The particles from the side channels flow into the main straight channel at t = 0.4 s. (b)-(e) Gradually sheath flow from the middle becomes dominant and pushes the particle flow towards the inlet from t = 1.6 s to t = 2.4 s. (f) Particles are completely pushed beyond the boundary of the microscopic focusing area at t = 2.8 s. (g)-(i) Sample flow overcomes the resistance of the sheath flow and gradually flows towards the straight section of the microfluidic device through the coss junction from t = 4.6 s to t = 6 s. (j) The particles from the side channels flow into the main straight channel as usual at t = 6.8 s.

Fig. S3(A) Fluorescent trajectories of 50-nm (pseudo-coloured red) polystyrene particles at the expansion region of the co-flow microfluidic device under different PEO concentrations. When increasing the PEO concentration to 3,000 ppm or above, we observed 50-nm particles migrated from the channel side walls toward the channel centre. Due to the flow oscillations at PEO concentrations of 3,000 ppm and 5,000 ppm, we used a flow rate ratio of 4:1 for those PEO concentrations to ensure the flow is stable. (B) Normalised fluorescence intensity of particle distribution across the yellow dotted line.

Fig. S4. CAD design of the sheathless microfluidic device used for high concentration PEO concentration experiments to investigate the focusing of nanoparticles.

Fig. S5. Fluorescent trajectories of 100-nm (pseudo-coloured red), 200-nm (pseudo-coloured yellow) and 500-nm (pseudo-coloured green) polystyrene particles at the expansion region of the sheathless microfluidic device for 5,000 ppm PEO aqueous solution.

Fig. S6. Design of a parallelised microfluidic device with straight channels to enhance the throughput.

Separation mechanism	Particle sizes	Separation resolution	Biological particles	Separation purity	Separation efficiency	Throughput	References
Ultracentrifugation	50–200 nm	100-150 nm	Exosomes, EVs	N/A	23% - 70%	53 μL/min	1–3
Ultrafiltration	50-250 nm	150 nm	Exosomes, natural organic matters	91.5%	70% - 82%	16 mL/min	46
Size exclusion chromatography	50–200 nm	120-150 nm	Exosomes	N/A	80%-90%	0.5 mL/min	7–9
Acoustophoresis	100–900 nm	230 nm	EVs	98%	> 90%	4- 80 μL/min	10
Electrophoresis	100-1,000 nm	400 nm	Exosomes	N/A	65% - 98%	$1 \mu L/min$	11
Magnetophoresis	5 nm-200 nm	800 nm	EVs	80%	80% - 90%	2.5 µL/min	12
Inertial microfluidics	200 nm–2 µm	800 nm	EVs	N/A	15% - 97%	80 µL/min	13,14
Deterministic lateral displacement	51 nm-1.5 μm	150 nm	EVs	98%	39%	0.05 μL/ min	15,16
Microfluidic filtration	30–200 nm	150 nm	Exosomes	N/A	74%	40 µL/min	17
Pinched flow fractionation	30 nm–2 μm	400 nm	EVs	N/A	70% - 90%	20 µL/min	18
Viscoelastic microfluidics	100 nm– 2 μm	400 nm	Exosomes, EVs	96%	93%	3 µL/min	19,20
Viscoelastic microfluidics	100–500 nm	100 nm	EVs	40% - 90 %	50% - 86%	3 μL/min	This study

Table S1	Summary	of submicron	and nanopa	rticle separation	techniques
	~		1	1	1

References

- 1 G. K. Patel, M. A. Khan, H. Zubair, S. K. Srivastava, M. Khushman, S. Singh and A. P. Singh, *Sci. Rep.*, 2019, **9**, 5335.
- 2 M. A. Livshits, E. Khomyakova, E. G. Evtushenko, V. N. Lazarev, N. A. Kulemin, S. E. Semina, E. V. Generozov and V. M. Govorun, *Sci. Rep.*, 2015, **5**, 17319.
- 3 H. G. Lamparski, A. Metha-Damani, J.-Y. Yao, S. Patel, D.-H. Hsu, C. Ruegg and J.-B. Le Pecq, *J. Immunol. Methods*, 2002, **270**, 211–226.
- 4 J. Lohwacharin and S. Takizawa, J. Membr. Sci., 2009, 326, 354-362.
- 5 R. J. Lobb, M. Becker, S. Wen Wen, C. S. F. Wong, A. P. Wiegmans, A. Leimgruber and A. Möller, *J. Extracell. Vesicles*, 2015, **4**, 27031.
- 6 A. Cheruvanky, H. Zhou, T. Pisitkun, J. B. Kopp, M. A. Knepper, P. S. T. Yuen and R. A. Star, *Am. J. Physiol.-Ren. Physiol.*, 2007, **292**, F1657–F1661.
- 7 C.-S. Hong, S. Funk, L. Muller, M. Boyiadzis and T. L. Whiteside, J. Extracell. Vesicles, 2016, 5, 29289.
- 8 F. A. W. Coumans, A. R. Brisson, E. I. Buzas, F. Dignat-George, E. E. E. Drees, S. El-Andaloussi, C. Emanueli, A. Gasecka, A. Hendrix, A. F. Hill, R. Lacroix, Y. Lee, T. G. van Leeuwen, N. Mackman, I. Mäger, J. P. Nolan, E. van der Pol, D. M. Pegtel, S. Sahoo, P. R. M. Siljander, G. Sturk, O. de Wever and R. Nieuwland, *Circ. Res.*, 2017, **120**, 1632–1648.
- 9 T. Baranyai, K. Herczeg, Z. Onódi, I. Voszka, K. Módos, N. Marton, G. Nagy, I. Mäger, M. J. Wood, S. E. Andaloussi, Z. Pálinkás, V. Kumar, P. Nagy, Á. Kittel, E. I. Buzás, P. Ferdinandy and Z. Giricz, *PLOS ONE*, 2015, 10, e0145686.
- 10M. Wu, Y. Ouyang, Z. Wang, R. Zhang, P.-H. Huang, C. Chen, H. Li, P. Li, D. Quinn, M. Dao, S. Suresh, Y. Sadovsky and T. J. Huang, *Proc. Natl. Acad. Sci.*, 2017, **114**, 10584–10589.
- 11 R. T. Davies, J. Kim, S. C. Jang, E.-J. Choi, Y. S. Gho and J. Park, *Lab. Chip*, 2012, **12**, 5202–5210.
- 12L. Zeng, S. Hu, X. Chen, P. Zhang, G. Gu, Y. Wang, H. Zhang, Y. Zhang and H. Yang, *Lab. Chip*, 2022, **22**, 2476–2488.
- 13L. Wang and D. S. Dandy, Adv. Sci., 2017, 4, 1700153.
- 14H. M. Tay, S. Kharel, R. Dalan, Z. J. Chen, K. K. Tan, B. O. Boehm, S. C. J. Loo and H. W. Hou, NPG Asia Mater., 2017, 9, e434–e434.
- 15K. K. Zeming, N. V. Thakor, Y. Zhang and C.-H. Chen, Lab. Chip, 2015, 16, 75-85.
- 16S. M. Santana, M. A. Antonyak, R. A. Cerione and B. J. Kirby, *Biomed. Microdevices*, 2014, 16, 869–877.
- 17F. Inci, Langmuir, 2022, 38, 1897-1909.
- 18S. Shin, D. Han, M. C. Park, J. Y. Mun, J. Choi, H. Chun, S. Kim and J. W. Hong, *Sci. Rep.*, 2017, 7, 9907.
- 19C. Liu, J. Guo, F. Tian, N. Yang, F. Yan, Y. Ding, J. Wei, G. Hu, G. Nie and J. Sun, *ACS Nano*, 2017, **11**, 6968–6976.
- 20C. Liu, J. Zhao, F. Tian, J. Chang, W. Zhang and J. Sun, J. Am. Chem. Soc., 2019, 141, 3817–3821.