Supplementary Information: Investigating the Mechanism of Phosphorene Nanoribbon Synthesis by Discharging Black Phosphorus Intercalation Compounds

Rebecca Shutt¹, Eva Aw¹, Qili Liu², Jasper Berry-Gair², Hector J. Lancaster¹, Samia Said³, Thomas S. Miller³, Furio Cora², Christopher A. Howard^{1*}, Adam J. Clancy^{2*}.

(1) Department of Physics and Astronomy, University College London, London, WC1E 6BT (UK),

(2) Department of Chemistry, University College London, London, WC1E 0AJ (UK),

(3) Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Gower Street, London, WC1E 6BT (UK).

Email: a.clancy@ucl.ac.uk, c.howard@ucl.ac.uk

Supplementary figure S1. UV-vis spectra of PhCN before and after addition to $Li_{(1/8)}P$, with photos of PhCN in cuvette before and after addition to $Li_{(1/8)}P$ inset.

Supplementary figure S2. Supplementary Raman map analysis. Fitted centres of Raman peaks arising from (a) A_g^1 (b) B_{2g} , (c) A_g^2 modes in BP, $Li_{(1/8)}P$, and P-PhCN samples. Lateral scale bar = 20 μ m.

Supplementary figure S3. Optical micrographs of the (a) BP, (b) $Li_{(1/8)}P$, and (c) P-PhCN samples captured through a through a ×20 objective lens. The crosshairs (white) and 50 µm × 50 µm area used for Raman spectroscopic map analysis (red box) are shown. Scalebar = 50 µm.

Supplementary table S1. The mean intensities, peak centres, and FWHM extracted from the Raman spectroscopy map analysis. The corresponding first standard deviations from the mean are also given.

BP			
Peak	Parameter	mean (μ)	standard deviation (σ)
A_g^1	centre	362.0	0.3
Ū	FWHM	3.1	0.2
	intensity	1730	420
B_{2g}	centre	439.0	0.3
	FWHM	3.7	0.5
	intensity	1520	380
A_g^2	centre	466.5	0.2
-	FWHM	3.0	0.1
	intensity	2630	940

Li_(1/8)P

Peak	Parameter	mean (μ)	standard deviation (σ)
A_{g}^{1}	centre	362.9	1.3
Ū	FWHM	10.1	10.1
	intensity	300	230
B_{2g}	centre	440.8	0.4
	FWHM	9.0	4.4
	intensity	490	240
A_g^2	centre	468.5	0.7
-	FWHM	7.8	2.2
	intensity	1020	490

P-PhCN

Peak	Parameter	mean (μ)	standard deviation (σ)
A_g^1	centre	363.0	0.1
-	FWHM	5.6	1.1
	intensity	1390	490
B_{2g}	centre	439.6	0.5
	FWHM	6.7	1.6
	intensity	2050	500
A_g^2	centre	467.5	0.3
-	FWHM	5.3	0.8
	intensity	4470	1180

Supplementary figure S4. High resolution X-ray photoelectron spectroscopy (XPS) lithium 1s, carbon 1s, and oxygen 1s spectra fitted with several components is shown along with the survey spectrum for each samples BP, Li_(1/8)P, and P-PhCN.

Supplementary table S2. Surface atomic composition extracted from the XPS spectra of BP, $Li_{(1/8)}P$, and P-PhCN.

		Li _(1/8) P			
%	Ratio vs P	Element	%	Ratio vs P	Ratio vs Li
26.76	0.52	С	14.43	2.60	0.40
0.00	0.00	Li	35.99	6.49	1.00
21.57	0.42	0	44.04	7.94	1.22
51.67	1.00	Р	5.54	1.00	0.15
	% 26.76 0.00 21.57 51.67	%Ratio vs P26.760.520.000.0021.570.4251.671.00	Li Li % Ratio vs P Element 26.76 0.52 C 0.00 0.00 Li 21.57 0.42 O 51.67 1.00 P	Li (1/8)Element%Ratio vs PElement26.760.52C0.000.00Li21.570.42O51.671.00P	Katio vs PElement%Ratio vs P26.760.52C14.432.600.000.00Li35.996.4921.570.42O44.047.9451.671.00P5.541.00

P-PhCN

Element	%	Ratio vs P	Ratio vs Li
С	28.25	2.53	1.05
Li	26.94	2.41	1.00
0	33.64	3.01	1.25
Р	11.17	1.00	0.41

Supplementary Figure 5. Powder xray diffraction (Cu k α) of, from bottom to top, BP, Li_(1/8)P, and P-PhCN

TEM further analysis

Supplementary figure S6. Additional TEM micrographs of P-PhCN sonicated in NMP. Scalebars: (a-c) = 200 nm, (d,e) = 100 nm, (f) = 50 nm.

Supplementary figure S7.TEM characterisation of BP sonicated in NMP. (a-e) TEM micrographs of exfoliated BP. Scalebars: (a-c) = 1 μ m, (d,e) = 200 nm. (f) 20 nm⁻¹.

AFM further analysis

Supplementary figure S8. AFM images of tape-exfoliated (a,b) BP and (c) $Li_{(1/8)}P$. All scalebars = 1 µm. (d) Height line-profile of $Li_{(1/8)}P$ indicated by green line in c.

Supplementary figure S9. Further analysis of AFM characterisation of tape exfoliated P-PhCN. Data processed AFM image after masking, showing all pixels filtered by a height threshold of (a) 2 nm and (b) 4 nm highlighted in red. (c) AFM image (replot of Main Text Figure 5b) with green line corresponding to height line-profile plotted in (e). (d) AFM image (replot of Main Text Figure 5d) with green line corresponding to height line-profile plotted in (f). Scalebars: (a,b) = 1 μ m, (c) = 500 nm, and (d) = 100nm.

Supplementary computational data.

Supplementary Table 3. Energy values from DFT calculations. E refers to output ground state energy from calculation. ΔH_f normalised to unit cell (i.e., output energy), P atom (i.e. output divided by 32) and Li atom (divided by number of lithium per unit cell) * Calculated from Li⁺_(g) calculation by incorporation of lithium's 1st ionisation energy (0.1980789 Hartree). ‡ Calculated from Li⁰_(g) value by incorporation of lithium's cohesion energy (0.0738661 Hartree).

	E		ΔH _f			
	Hartree kJ/mol			kJ mol(P) ⁻¹	kJ mol(Li) ⁻¹	
bP	-1.365 × 10 ³	-3.585 × 10 ⁶				
P ₃₂	-1.092 × 10 ⁴	-2.868 × 10 ⁷				
Li+ _(g)	-7.279	-1.911 × 10 ⁴	-			
Li ⁰ (g) *	-7.477	-1.963 × 104				
Li ⁰ (s) [‡]	-7.551	-1.982 × 10 ⁴				
Li ₁ P ₃₂	-1.093 × 10 ⁴	-2.870 × 10 ⁷	-65.4	-2.0	-65.4	
Li ₂ P ₃₂ (Li different)	-1.094 × 10 ⁴	-2.872 × 10 ⁷	-164.5	-5.1	-82.2	
Li ₂ P ₃₂ (Li same)	-1.094 × 10 ⁴	-2.872 × 10 ⁷	-176.4	-5.5	-88.2	
Li ₄ P ₃₂ ("Even")	-1.095 × 10 ⁴	-2.876 × 10 ⁷	-350.4	-10.9	-87.6	
Li ₄ P ₃₂ ("Top")	-1.095 × 10 ⁴	-2.876 × 10 ⁷	-179.0	-5.6	-44.8	
Li ₄ P ₃₂ ("Bottom")	-1.095 × 10 ⁴	-2.876 × 10 ⁷	-380.0	-11.9	-95.0	
Li ₄ P ₃₂ ("Left")	-1.095 × 10 ⁴	-2.876 × 10 ⁷	-294.2	-9.2	-73.5	
Li ₄ P ₃₂ ("Right")	-1.095 × 10 ⁴	-2.876 × 10 ⁷	-326.1	-10.2	-81.5	
Li ₈ P ₃₂	-1.098 × 104	-2.884 × 10 ⁷	-849.8	-26.6	-106.2	

Supplementary Discussion of Li(1/8)P Li Configurations

In the Li₂P₃₂ (i.e., Li_(1/16)P) model, there are two primary configurations for Li placement – same layer vs different layer – as discussed in the main text. However, the different initial configurations are possible for all stoichiometries. Using the P₃₂ (2 × 1 × 2) initial supercell, there is only one viable initial configuration each for LiP₃₂ and Li₈P₃₂, however, a large number are possible for Li₄P₃₂. The primary configuration (as discussed in the main text) involved placing two Li in each interlayer gallery to maximise Li distribution (here named "Even"). To better represent the potential diversity in Li_(1/8)P structures and model systems with more compact Li distributions, a range of Li₄P₃₂ input models were created by removing four Li from the relaxed Li₈P₃₂ model.

The Li₈P₃₂ system showed breakage of several P bonds and a significant distortion of the P framework (Supplementary figure 15, Main text Fig 2i), meaning removal of different selection of Li would provide a fuller understanding of feasible Li₄P₃₂ final structures. In this vein, we conceptually cut halfway down the b/c-axes and removed the lithium either side. Cutting the b-axis gave lithium in the *Top* and *Bottom*, restricted to a single interlayer gallery, similar to the "Li₂P₃₂ (Li same)" model. Conversely, cutting down the c-axis gave lithium restricted to the *Left* and *Right* of the cell (Supplementary figure 16).

In the *Top* model, where all 4 lithium remain near the intralayer P-P fractures, the fractures are also seen, while all three other models (*Bottom/Left/Right*) do not show bond cleavage, akin to *Even*. The enthalpy of formation (Supplementary table 3) of *Top* is likewise distinct (-5.6 kJ mol(P)⁻¹) from the other four Li₄P₃₂ models which all very similar in energy (-9.2 to -11.9 kJ mol(P)⁻¹) independent of local Li configuration. The interlayer structure is similar between all Li₄P₃₂ structures, where all models show layer-shear to an AB structure with lithium pockets. Given the stacking similarities, the lesser enthalpy of formation for the *Top* model can be attributed to the necessary energy cost of breaking the intralayer P-P bonds. We note that while P-P bond cleavage is less favourable, the energy cost is low (~5.5 kJ mol⁻¹). Taken together, the similarities in energy (both for local Li arrangements and with/without P-P cleavage) and in P-framework stacking further support the concept that there will be limited thermodynamic driven local ordering, and intercalation will likely be highly locally heterogeneous.

Supplementary figure S10. BP supercell down the (from left to right) a, b, and c axes.

Supplementary figure S11. LiP_{32} supercell down the (from left to right) a, b, and c axes.

Supplementary figure S12. Li_2P_{32} supercell with Li evenly distributed between interlayer galleries, visualised down the (from left to right) a, b, and c axes.

Supplementary figure S13. Li_2P_{32} supercell with both Li in the same interlayer gallery, visualised down the (from left to right) a, b, and c axes.

Supplementary figure S14. Li_4P_{32} supercell visualised down the (from left to right) a, b, and c axes.

Supplementary figure S15. Li_8P_{32} supercell visualised down the (from left to right) a, b, and c axes.

Li_(1/8) Initial Li Position

Supplementary figure S16. Li_4P_{32} supercells derived from relaxed Li_8P_{32} to remove half of Li in different configurations. Visualised down the (from top to bottom) free view near a axis, a, b, and c axes.

CRYSTAL17 Input Scripts

P-black

CRYSTAL 0004 3.31360 10.47800 4.37630 90.0000 1 15 0.00000 0.10168 0.08056 OPTGEOM **ENDOPT** END 15 10 0072.01.0 52426.999233 0.0005520716410 7863.2660552 0.0042678595308 1789.5227333 0.0219315291860 506.27300165 0.0856671683730 164.60698546 0.2484068660500 58.391918722 0.4633675397100 21.643663201 0.3535055815600 0032.01.0 99.013837620 0.0218956799580 30.550439817 0.0956504702950 5.4537087661 -0.2945427018600 0022.01.0 2.6503362563 1.3294381200000 1.2726688867 0.6610939647300 0010.01.0 0.3072409700 1.0000000000000 0010.01.0 0.1202708300 1.0000000000000 0256.01.0 472.27219248 0.0025710623052 111.58882756 0.0202502979990 35.445936418 0.0915807167870 12.990776875 0.2574945401400 5.0486221658 0.4286289975800 0213.01.0 1.8889755200 1.0000000000000 0210.01.0 0.4424064200 1.0000000000000 0210.01.0 0.1573225300 1.0000000000000 0310.01.0 0.5061295000 1.0000000000000 99 0

END DFT B3LYP-D3 NUMERICAL XLGRID END GCP METHOD dft/tzvp END TOLINTEG 777714 SCFDIR SHRINK 44 MAXCYCLE 300 **FMIXING** 80 TOLDEE 7 END

LiP32

CRYSTAL 000 1 6.63838802 10.80798997 8.72292705 98.734994 90.090381 80.960448 33 15 -5.066534882611E-01 9.140823091669E-01 8.502776525454E-01 15 -3.283458868683E-01 -1.160466887460E+00 -1.039820289764E-01 15 8.948813466737E-01 4.049593723035E+00 1.827494364588E+00 15 -1.162228037101E-01 -4.428339814653E+00 1.638286759877E+00 15 1.508234452956E+00 -4.097167357267E+00 1.669513679574E-01 2.522612374016E+00 4.602278259914E+00 -9.924858268054E-01 15 15 1.299740299029E+00 -1.427874991024E+00 2.751116883054E+00 15 1.124535310155E+00 8.302600148783E-01 2.369119382041E+00 -5.531202596792E-01 1.425179429753E+00 -3.430183692564E+00 15 -3.490003575866E-01 -1.760521488132E+00 4.203020077093E+00 15 15 8.916375738577E-01 4.685273993958E+00 -2.511568673470E+00 15 -1.197960819970E-01 -3.829781619640E+00 -2.688298645987E+00 15 1.529130562800E+00 -3.497395249845E+00 -4.139963956693E+00 15 2.569199918898E+00 4.090746759608E+00 3.287810877415E+00 15 1.296029731341E+00 -8.299040253375E-01 -1.575269310228E+00 1.121091528652E+00 1.466799607781E+00 -1.969832825834E+00 15 2.750132388205E+00 1.176624917003E+00 8.798673279738E-01 15 2.923286755333E+00 -8.983913158959E-01 -7.536479455073E-02 15 -2.421658445231E+00 3.906567532046E+00 1.745390261682E+00 15 15 3.188820055074E+00 -4.116675202791E+00 1.622004252174E+00 -1.743460266037E+00 -4.359163650192E+00 1.382907126540E-01 15 15 -7.339281696300E-01 4.339035909087E+00 -1.022280514003E+00 -2.006640558819E+00 -1.722729736846E+00 2.718779960930E+00 15 15 -2.175310404453E+00 4.846654177002E-01 2.238277292444E+00 15 2.806918847183E+00 1.703398963187E+00 -3.402902821535E+00 15 2.950686062285E+00 -1.488923808691E+00 4.234726071570E+00 -2.425261446615E+00 4.497230943012E+00 -2.439549356928E+00 15 15 3.186851052982E+00 -3.535167105611E+00 -2.655793639010E+00 15 -1.770695050613E+00 -3.768592071840E+00 -4.171810015465E+00 15 -7.907897761614E-01 3.812570392363E+00 3.260726851012E+00 15 -2.008838091342E+00 -1.141249205087E+00 -1.559105137059E+00 -2.178601972941E+00 1.075279493570E+00 -1.946695162714E+00 15 -2.299281050830E+00 1.908572419221E+00 4.221888138057E+00 3 OPTGEOM ENDOPT END 15 10 0072.01.0 52426.999233 0.0005520716410

7863.2660552 0.0042678595308 1789.5227333 0.0219315291860 506.27300165 0.0856671683730 164.60698546 0.2484068660500 58.391918722 0.4633675397100 21.643663201 0.3535055815600 0032.01.0 99.013837620 0.0218956799580 30.550439817 0.0956504702950 5.4537087661 -0.29454270186000022.01.0 2.6503362563 1.3294381200000 1.2726688867 0.6610939647300 0010.01.0 0.3072409700 1.0000000000000 0010.01.0 0.1202708300 1.0000000000000 0256.01.0 472.27219248 0.0025710623052 111.58882756 0.0202502979990 35.445936418 0.0915807167870 12.990776875 0.2574945401400 5.0486221658 0.4286289975800 0213.01.0 1.8889755200 1.0000000000000 0210.01.0 0.4424064200 1.0000000000000 0210.01.0 0.1573225300 1.0000000000000 0310.01.0 0.5061295000 1.0000000000000 35 0062.01.0 6269.2628010 0.00020540968826 940.31612431 0.00159165540890 214.22107528 0.00828698297070 60.759840184 0.03385637424900 19.915152032 0.11103225876000 7.3171509797 0.27449383329000 0 0 2 1.0 1.0 2.9724674216 0.23792456411000 1.2639852314 0.30765411924000 0010.01.0 0.5025516200 1.00000000000000 0010.01.0 0.1000746200 1.00000000000000

0210.01.0 0.1450713300 1.000000000000000 99 0 END DFT SPIN B3LYP-D3 NUMERICAL XLGRID END GCP METHOD dft/tzvp END ANDERSON TOLINTEG 777817 SCFDIR SHRINK 44 MAXCYCLE 300 **FMIXING** 90 TOLDEE 7 SPINLOCK 1 30 END

Li2P32 (Same layer)

CRYSTAL 000 1 6.61313933 10.98605837 8.69146692 85.754139 90.100148 89.653186 34 -9.884418480593E-03 1.011129186927E-01 9.079619762206E-03 15 15 -6.775969577570E-03 -1.098324504204E-01 -3.653841516840E-02 15 -2.425967879221E-04 4.095432763094E-01 2.958291140049E-01 15 -1.834445481705E-03 -3.883980390474E-01 2.016566307318E-01 15 2.411785508452E-01 -3.898994057021E-01 2.518409181104E-02 15 2.487598419485E-01 4.003334285102E-01 -2.538807965154E-02 15 2.421271064661E-01 -1.143320545984E-01 2.738441911035E-01 15 2.440627871413E-01 8.668411948299E-02 1.755505957948E-01 -9.033729545102E-03 8.343074834916E-02 -4.863285518827E-01 15 -6.409368582418E-03 -1.138972728213E-01 4.468362129923E-01 15 15 -5.827442091986E-03 4.132371612367E-01 -1.910428910643E-01 15 -6.626837228151E-03 -3.873424135446E-01 -2.933842724150E-01 15 2.449805285201E-01 -3.878722655267E-01 -4.625090030364E-01 15 2.455630730213E-01 4.135181703472E-01 4.724514784589E-01 2.375226306741E-01 -1.153986670224E-01 -2.104274173888E-01 15 15 2.338811975668E-01 8.569699422472E-02 -3.084159463983E-01 15 4.937218587670E-01 9.159109138786E-02 1.178673204638E-03 4.921294338141E-01 -1.121872585149E-01 -4.323519138425E-02 15 4.874202124188E-01 4.288186929561E-01 2.936063451434E-01 15 15 4.899532972089E-01 -3.730098696433E-01 1.957737912010E-01 -2.536346732254E-01 -3.858626948260E-01 3.109091355134E-02 15 15 -2.539175231334E-01 4.115843714307E-01 -1.896951770494E-02 -2.582792529057E-01 -1.050243596007E-01 2.767770111798E-01 15 15 -2.613143128535E-01 9.743595164406E-02 1.783051869425E-01 15 4.871917664551E-01 7.411463035821E-02 -4.711741570725E-01 15 4.908786260995E-01 -1.183297241331E-01 4.476834145733E-01 -4.986693794883E-01 4.063795544467E-01 -1.945904535037E-01 15 15 4.955703716536E-01 -3.937190036208E-01 -2.911492711477E-01 15 -2.566324978116E-01 -3.884664348675E-01 -4.647281592926E-01 15 -2.586798857637E-01 4.169245031480E-01 4.567112336017E-01 15 -2.531354453930E-01 -1.288233682686E-01 -2.071409986002E-01 -2.545367310607E-01 6.723915844295E-02 -3.137931213584E-01 15 3 -2.306982028797E-01 2.819773583809E-01 -3.186239955352E-01 3 4.718094296900E-01 2.105771528096E-01 3.119739385477E-01 OPTGEOM **ENDOPT** END 15 10 0072.01.0

52426.999233 0.0005520716410 7863.2660552 0.0042678595308 1789.5227333 0.0219315291860 506.27300165 0.0856671683730 164.60698546 0.2484068660500 58.391918722 0.4633675397100 21.643663201 0.3535055815600 0032.01.0 99.013837620 0.0218956799580 30.550439817 0.0956504702950 5.4537087661 -0.2945427018600 0022.01.0 2.6503362563 1.3294381200000 1.2726688867 0.6610939647300 0010.01.0 0.3072409700 1.0000000000000 0010.01.0 0.1202708300 1.0000000000000 0256.01.0 472.27219248 0.0025710623052 111.58882756 0.0202502979990 35.445936418 0.0915807167870 12.990776875 0.2574945401400 5.0486221658 0.4286289975800 0213.01.0 1.8889755200 1.0000000000000 0210.01.0 0.4424064200 1.0000000000000 0210.01.0 0.1573225300 1.0000000000000 0310.01.0 0.5061295000 1.0000000000000 35 0062.01.0 6269.2628010 0.00020540968826 940.31612431 0.00159165540890 214.22107528 0.00828698297070 60.759840184 0.03385637424900 19.915152032 0.11103225876000 7.3171509797 0.27449383329000 0 0 2 1.0 1.0 2.9724674216 0.23792456411000 1.2639852314 0.30765411924000 0010.01.0 0.5025516200 1.00000000000000 0010.01.0

0.1000746200 1.000000000000000 0210.01.0 0.1450713300 1.00000000000000 99 0 END DFT B3LYP-D3 NUMERICAL XLGRID END GCP METHOD dft/tzvp END ANDERSON TOLINTEG 777817 SCFDIR SHRINK 44 MAXCYCLE 300 **FMIXING** 90 TOLDEE 7 END

Li2P32 (Different Gallery)

CRYS	STAL			
000				
1				
6.634	07522 10.74268	802 8.74805453	96.544248 90.013366	89.863904
34				
15	0.9107140000	0.1002230000	0.1013460000	
15	0.9639650000	0.8925230000	0.9856660000	
15	0.0851670000	0.3954600000	0.2202050000	
15	0.0320410000	0.6068280000	0.1799560000	
15	0.2776330000	0.6068200000	0.0080820000	
15	0.3308580000	0.3991550000	0.8924120000	
15	0.2100640000	0.8910180000	0.3142160000	
15	0.1573140000	0.0990270000	0.2753270000	
15	0.9046510000	0.0944350000	0.6061040000	
15	0.9608280000	0.8908290000	0.4838630000	
15	0.0843010000	0.4002690000	0.7184010000	
15	0.0315440000	0.6083200000	0.6795140000	
15	0.2808110000	0.6084860000	0.5098940000	
15	0.3369440000	0.4049000000	0.3876340000	
15	0.2095520000	0.8924590000	0.8137960000	
15	0.1564070000	0.1039190000	0.7735380000	
15	0.4029290000	0.1002070000	0.1014080000	
15	0.4554030000	0.8924900000	0.9856210000	
15	0.5825350000	0.4064650000	0.2144000000	
15	0.5310900000	0.6104640000	0.1747520000	
15	0.7861850000	0.6068600000	0.0081220000	
15	0.8386890000	0.3991010000	0.8923240000	
15	0.7106930000	0.8883530000	0.3138210000	
15	0.6597000000	0.0903170000	0.2633820000	
15	0.4123900000	0.0950660000	0.6058090000	
15	0.4594570000	0.8913590000	0.4841390000	
15	0.5818930000	0.4090050000	0.7303680000	
15	0.5309580000	0.6109620000	0.6799280000	
15	0.7821550000	0.6079930000	0.5096020000	
15	0.8292130000	0.4042750000	0.3879520000	
15	0.7105260000	0.8888500000	0.8189860000	
15	0.6591050000	0.0928500000	0.7793460000	
3	0.6207180000	0.2496530000	0.4968870000	
3	0.3967050000	0.8283320000	0.6313720000	
OPTO	GEOM			
ENDO	OPT			
END				
15 10				
007	2.0 1.0			

52426.999233 0.0005520716410 7863.2660552 0.0042678595308 1789.5227333 0.0219315291860 506.27300165 0.0856671683730 164.60698546 0.2484068660500 58.391918722 0.4633675397100 21.643663201 0.3535055815600 0032.01.0 99.013837620 0.0218956799580 30.550439817 0.0956504702950 5.4537087661 -0.2945427018600 0022.01.0 2.6503362563 1.3294381200000 1.2726688867 0.6610939647300 0010.01.0 0.3072409700 1.0000000000000 0010.01.0 0.1202708300 1.0000000000000 0256.01.0 472.27219248 0.0025710623052 111.58882756 0.0202502979990 35.445936418 0.0915807167870 12.990776875 0.2574945401400 5.0486221658 0.4286289975800 0213.01.0 1.8889755200 1.0000000000000 0210.01.0 0.4424064200 1.0000000000000 0210.01.0 0.1573225300 1.0000000000000 0310.01.0 0.5061295000 1.0000000000000 35 0062.01.0 6269.2628010 0.00020540968826 940.31612431 0.00159165540890 214.22107528 0.00828698297070 60.759840184 0.03385637424900 19.915152032 0.11103225876000 7.3171509797 0.27449383329000 0 0 2 1.0 1.0 2.9724674216 0.23792456411000 1.2639852314 0.30765411924000 0010.01.0 0.5025516200 1.00000000000000 0010.01.0

0.1000746200 1.000000000000000 0210.01.0 0.1450713300 1.00000000000000 99 0 END DFT B3LYP-D3 NUMERICAL XLGRID END GCP METHOD dft/tzvp END ANDERSON TOLINTEG 777817 SCFDIR SHRINK 44 MAXCYCLE 300 **FMIXING** 90 TOLDEE 7 END

Li4P32

CRYS	STAL							
000								
1								
6.613	13933	10.98605	837	8.69146692	85.75413	9 90	.100148	89.653186
36								
15	0.906	2810957	0.09	953476965	0.93087272	214		
15	0.9619	9925111	0.89	903357656	0.9134942	364		
15	0.0812	2724286	0.39	962114149	0.3863520	518		
15	0.0292	2237873	0.60	061310753	0.2452544	617		
15	0.274	6964260	0.60)78629564	0.0721953	943		
15	0.3302	2606724	0.40)28927148	0.0546831	606		
15	0.2074	4756831	0.89	920371036	0.24039579	933		
15	0.1554	4972061	0.10)19356026	0.0992375	500		
15	0.906	2208745	0.09	953867777	0.4308324	481		
15	0.962	0020749	0.89	03417432	0.41345412	255		
15	0.081	1450537	0.39	61621457	0.8864545	189		
15	0.029	1394995	0.60	60723998	0.7452415	574		
15	0.274	6144804	0.60)77998624	0.5722067	529		
15	0.3304	4132406	0.40	28309570	0.5546591	376		
15	0.2074	4423498	0.89	919803591	0.7404203	379		
15	0.155	3080477	0.10	18906724	0.5992921	582		
15	0.4078	8825204	0.09	949311216	0.9311434	355		
15	0.454	7721965	0.89	00980572	0.9129932	043		
15	0.576	9939304	0.41	33846333	0.38379324	453		
15	0.526	3816472	0.61	44646277	0.2374302	714		
15	0.7819	9770196	0.60)78719383	0.07273912	294		
15	0.828	7653129	0.40)29418757	0.05467049	955		
15	0.710	3421206	0.88	36264001	0.2483042	913		
15	0.6598	8218684	0.08	347028559	0.1018531	374		
15	0.407	7874627	0.09	949401245	0.4312413	586		
15	0.454	7210427	0.89	00889793	0.4130199	532		
15	0.576	8279210	0.41	33971312	0.8837498	166		
15	0.526	3942203	0.61	44620759	0.7373404	487		
15	0.7819	9417613	0.60	079723308	0.5725979	372		
15	0.828	9994019	0.40)30596064	0.5545995	303		
15	0.710	3641466	0.88	336984187	0.7482876	703		
15	0.6598	8059265	0.08	347701047	0.6018440	608		
3	0.6169	181680	0.24	90829682	0.74278990	91		
3	0.6169	359016	0.24	90915034	0.24264840	88		
3	0.5042	667081	0.74	65594456	0.28589941	65		
3	0.7521	073196	0.75	61124196	0.60943727	81		
OPTO	GEOM							
ENDC)PT							
END								

15 10

0 0 7 2.0 1.0	
52426.999233	0.0005520716410
7863.2660552	0.0042678595308
1789.5227333	0.0219315291860
506.27300165	0.0856671683730
164.60698546	0.2484068660500
58.391918722	0.4633675397100
21.643663201	0.3535055815600
0 0 3 2.0 1.0	
99.013837620	0.0218956799580
30.550439817	0.0956504702950
5.4537087661	-0.2945427018600
0 0 2 2.0 1.0	
2.6503362563	1.3294381200000
1 2726688867	0 6610939647300
0010010	
0.3072409700	1 0000000000000
0.0072400700	1.0000000000000000000000000000000000000
0 1202708300	1 0000000000000
0.12027000000	1.0000000000000000000000000000000000000
172 272102/18	0 0025710623052
111 58882756	0.0023710023032
35 445036418	0.02023023733390
12 000776975	0.0913007107070
12.990770075 5.0496221659	0.2374943401400
0.0400221000	0.4200209975000
1 000755200	1 0000000000000
1.0009/00200	1.0000000000000000000000000000000000000
0 2 1 0.0 1.0	1 0000000000000
0.4424064200	1.0000000000000000000000000000000000000
0 2 1 0.0 1.0	4 0000000000000000000000000000000000000
0.1573225300	1.00000000000000
0 3 1 0.0 1.0	4 0000000000000000000000000000000000000
0.5061295000	1.00000000000000
35	
0062.01.0	
6269.2628010 0.00	020540968826
940.31612431 0.00)159165540890
214.22107528 0.00)828698297070
60.759840184 0.03	3385637424900
19.915152032 0.11	103225876000
7.3171509797 0.27	7449383329000
0 0 2 1.0 1.0	
2.9724674216 0.23	3792456411000
1.2639852314 0.30	0765411924000
0 0 1 0.0 1.0	

0.5025516200 1.000000000000000 0010.01.0 0.1000746200 1.00000000000000 0210.01.0 0.1450713300 1.000000000000000 99 0 END DFT B3LYP-D3 NUMERICAL XLGRID END GCP METHOD dft/tzvp END ANDERSON TOLINTEG 777817 SCFDIR SHRINK 44 MAXCYCLE 300 **FMIXING** 90 TOLDEE 7 END

Li8P32

CRYS	TAL							
000								
1								
6.613	13933	10.986058	337	8.69146692	85.7	'54139	90.100148	89.653186
40								
15	0.906	2810957	0.09	53476965	0.930)87272 [^]	14	
15	0.961	9925111	0.89	03357656	0.913	3494286	64	
15	0.081	2724286	0.39	62114149	0.386	35206 ⁻	18	
15	0.0292	2237873	0.60	61310753	0.245	525446 ⁻	17	
15	0.274	6964260	0.60	78629564	0.072	2195394	43	
15	0.330	2606724	0.40	28927148	0.054	683160	06	
15	0.207	4756831	0.89	20371036	0.240)395793	33	
15	0.155	4972061	0.10	19356026	0.099)23756(00	
15	0.906	2208745	0.09	53867777	0.430)832448	31	
15	0.962	0020749	0.89	03417432	0.413	345412	55	
15	0.081	1450537	0.39	61621457	0.886	6454518	39	
15	0.029	1394995	0.60	60723998	0.745	5241557	74	
15	0.274	6144804	0.60	77998624	0.572	206752	29	
15	0.330	4132406	0.40	28309570	0.554	659187	76	
15	0.207	4423498	0.89	19803591	0.740	420387	79	
15	0.155	3080477	0.10	18906724	0.599	9292168	32	
15	0.407	8825204	0.09	949311216	0.931	14348	55	
15	0.454	7721965	0.89	00980572	0.912	2993204	43	
15	0.576	9939304	0.41	33846333	0.383	379324	53	
15	0.526	3816472	0.61	44646277	0.237	'43027 <i>'</i>	14	
15	0.781	9770196	0.60	78719383	0.072	2739129	94	
15	0.828	7653129	0.40)29418757	0.054	67049	55	
15	0.710	3421206	0.88	36264001	0.248	30429	13	
15	0.659	8218684	0.08	847028559	0.101	853187	74	
15	0.407	7874627	0.09	949401245	0.431	241368	36	
15	0.454	7210427	0.89	00889793	0.413	3019953	32	
15	0.576	8279210	0.41	33971312	0.883	3749816	66	
15	0.526	3942203	0.61	44620759	0.737	'340448	37	
15	0.781	9417613	0.60	79723308	0.572	2597937	72	
15	0.828	9994019	0.40	30596064	0.554	599530	03	
15	0.710	3641466	0.88	36984187	0.748	3287670	03	
15	0.659	8059265	0.08	347701047	0.601	844060	08	
3	0.6169	181680	0.24	90829682	0.742	789909	1	
3	0.6169	359016	0.24	90915034	0.242	648408	8	
3	0.5042	667081	0.74	65594456	0.285	899416	5	
3	0.7521	073196	0.75	61124196	0.609	437278	1	
3	0.4112	187034	0.76	71334354	0.468	658980	8	
3	0.3580	253593	0.76	04107427	0.834	133364	9	
3	0.0910	754882	0.30	14827500	0.455	486899	8	

3 0.33808517	82 0.2829103739	0.6074209063
OPTGEOM		
ENDOPT		
END		
15 10		
0 0 7 2.0 1.0		
52426.999233	0.0005520716410	
7863.2660552	0.0042678595308	
1789.5227333	0.0219315291860	
506.27300165	0.0856671683730	
164.60698546	0.2484068660500	
58.391918722	0.4633675397100	
21.643663201	0.3535055815600	
0 0 3 2.0 1.0		
99.013837620	0.0218956799580	
30.550439817	0.0956504702950	
5.4537087661	-0.2945427018600	
0 0 2 2.0 1.0		
2.6503362563	1.3294381200000	
1.2726688867	0.6610939647300	
0 0 1 0.0 1.0		
0.3072409700	1.00000000000000	
0 0 1 0.0 1.0		
0.1202708300	1.00000000000000	
0 2 5 6.0 1.0		
472.27219248	0.0025710623052	
111.58882756	0.0202502979990	
35.445936418	0.0915807167870	
12.990776875	0.2574945401400	
5.0486221658	0.4286289975800	
0 2 1 3.0 1.0		
1.8889755200	1.00000000000000	
0 2 1 0.0 1.0		
0.4424064200	1.0000000000000	
0 2 1 0.0 1.0		
0.1573225300	1.00000000000000	
0310010		
0 5061295000	1 00000000000000	
3.5		
0062010		
6269 2628010 0 0	0020540968826	
940 31612431 0 0	0020040500020	
214 22107528 0 0	0828608207070	
60 7508/018/ 0 0	3385637/2/000	
10 015152022 0 1	1103025876000	
7 3171500707 0 2	7//03223070000	
1.0111000101 0.Z	1773303323000	

0021.01.0 2.9724674216 0.23792456411000 1.2639852314 0.30765411924000 0010.01.0 0.5025516200 1.00000000000000 0010.01.0 0.1000746200 1.000000000000000 0210.01.0 0.1450713300 1.000000000000000 99 0 END DFT B3LYP-D3 NUMERICAL XLGRID END GCP METHOD dft/tzvp END ANDERSON TOLINTEG 777817 SCFDIR SHRINK 44 MAXCYCLE 300 **FMIXING** 90 TOLDEE 7 END