Supplemental Information for Surface Thermodynamics of Yttrium Titanate Pyrochlore Nanomaterials

Margaret E. Reece,^{a,b} Jiahong Li,^a Andrew C. Strzelecki,^b Juan Wen,^d Qiang Zhang,^a and Xiaofeng Guo^{a,c,*}

^a Department of Chemistry, Washington State University, Pullman WA 99164, United States

^b Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos New Mexico 87545, United States

^{c.}The School of Mechanical and Materials Engineering, Washington State University, Pullman WA 99164, United States

^{d.}School of Materials and Energy, Lanzhou University, Lanzhou Gansu 730000, China

*corresponding author; email <u>x.guo@wsu.edu</u>

Figure S1. Diagram illustrating the sol-gel synthesis route of as-prepared $Y_2Ti_2O_7$ nanoparticles.

Figure S2. Representative fit of synchrotron XRD pattern of 31 nm sized Y₂Ti₂O₇.

Figure S3. Representative fit of synchrotron XRD pattern of 35 nm sized $Y_2Ti_2O_7$.

Figure S4. Representative fit of synchrotron XRD pattern of 42 nm sized Y₂Ti₂O₇.

Figure S5. TEM images of the 34 nm (left) and 131 nm (center) nanoparticles and HRTEM of the 131 nm (right) material.

F

igure S6. TGA curves under a flowing N₂ atmosphere. Color lightens as the particle diameter increases.

Figure S7. DSC curves under a flowing N₂ atmosphere. Color lightens as the particle diameter increases.

Table S1. Experimentally determined enthalpy of drop solution (ΔH_{ds}), corrected enthalpy of drop solution (ΔH_{ds} '), enthalpy of formation from the oxides ($\Delta H_{f,ox}$) and standard enthalpy of formation (ΔH_{ds}°) for all pyrochlore samples following the thermochemical cycle in Table 2.

Y ₂ Ti ₂ O ₇	ΔH _{ds} (kJ/mol)	Corrected ΔH_{ds} '	ΔH _{f,ox} (kJ/mol)	Δ <i>H</i> _f ° (kJ/mol)
Sample		(kJ/mol)		
30.83	62.65 ⁺ ± 0.41 [‡] (5) [§]	38.92 ± 0.41	-38.04 ± 0.47	-3858.84 ± 5.46
34.74	56.72 ± 0.57 (3)	32.99 ± 0.57	-32.11 ± 0.61	-3852.91 ± 5.46
41.56	68.17 ± 1.29 (4)	47.83 ± 1.29	-46.95 ± 1.31	-3867.75 ± 5.60
131.4	78.79 ± 1.92 (4)	67.49 ± 1.92	-66.61 ± 1.94	-3887.41 ± 5.78

⁺Average. [‡]Two standard deviations of the average. [§]Number of measurements.

Figure S8. Linear fit of $\Delta G_{amorphization}$ energies of reported pyrochlore compounds^{1–3} (black circles) in relation to A/B cationic radii ratio⁴. This fit was used to estimate a value of $\Delta G_{amorphization}$ of Y₂Ti₂O₇ (blue square).

References

- Chung, C. K.; Lang, M.; Xu, H.; Navrotsky, A. Thermodynamics of Radiation Induced Amorphization and Thermal Annealing of Dy2Sn2O7 Pyrochlore. *Acta Mater* 2018, 155, 386–392. https://doi.org/10.1016/j.actamat.2018.06.003.
- (2) Chung, C. K.; Shamblin, J.; O'Quinn, E. C.; Shelyug, A.; Gussev, I.; Lang, M.; Navrotsky, A. Thermodynamic and Structural Evolution of Dy2Ti2O7 Pyrochlore after Swift Heavy Ion Irradiation. *Acta Mater* 2018, *145*, 227–234. https://doi.org/10.1016/j.actamat.2017.12.044.
- Chung, C. K.; O'Quinn, E. C.; Neuefeind, J. C.; Fuentes, A. F.; Xu, H.; Lang, M.; Navrotsky, A.
 Thermodynamic and Structural Evolution of Mechanically Milled and Swift Heavy Ion Irradiated
 Er2Ti2O7 Pyrochlore. Acta Mater 2019, 181. https://doi.org/10.1016/j.actamat.2019.09.022.

 Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallographica Section A* 1976, *32* (5). https://doi.org/10.1107/S0567739476001551.