Ultra-Compact and High-Performance Suspended Aluminum Scandium Nitride Lamb Wave Humidity Sensor with Graphene Oxide Layer

Supplementary Information

Zhifang Luo^{a,b,c,d,e}, Dongxiao Li^{d,e}, Xianhao Le^{d,e}, Tianyiyi He^{d,e}, Shuai Shao^{a,b,c},

Qiaoya Lv^{d,e}, Zhaojun Liu^{d,e}, Chengkuo Lee^{*d,e}, and Tao Wu^{*a,b,c}

^a School of Information Science and Technology, Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, CHINA

^b Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,

CHINA

^c University of Chinese Academy of Sciences, CHINA

^d Department of Electrical & Computer Engineering, National University of Singapore, SINGAPORE

^e Center for Intelligent Sensors and MEMS, National University of Singapore, SINGAPORE

Figure S1: (a)-(i) Frequency response of the sensors versus RH.

Figure S2: (a)-(i) S11 response of the sensors versus RH.

Figure S3: Applications of AlScN Lamb Wave humidity sensor. (a)-(c) Images of test illustration of human respiratory monitoring system and details of sensing mask. (d) Schematic of different breathing ways. Response of the sensor to (e) mouse/nose breath, and (f) normal/deep breath.