SUPPORTING INFORMATION

Photochemical synthesis, characterization, and electrochemical sensing properties of CDs-AuNPs nanohybrids

Giuseppe Nocito^a, Rayhane Zribi^b, Meryam Chelly^b, Luca Pulvirenti^c, Giuseppe Nicotra^d, Corrado Bongiorno^d, Antonino Arrigo^{a,e} ^{*}, Barbara Fazio^{f,g}, Giovanni Neri^b, Francesco Nastasi^{a,e,f *} and Sabrina Conoci^{a,f,h}

^aDepartment of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy; (Present address for G. Nocito: Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN) URT of Messina at Department of Chemical, Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy)

^bDepartment of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy.

^eDepartment of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy

^dConsiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Strada VIII, n. 5, Zona Industriale, Catania, 1-95121 Italy

^eInteruniversitary Research Center for Artificial Photosynthesis (Solar Chem, Messina Node), Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.

^fConsiglio Nazionale delle Ricerche, URT Lab-Sens Beyond Nano – Department of Physical Science and Technologies of Matter, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy

^gConsiglio Nazionale delle Ricerche, Istituto per I Processi Chimico Fisici (CNR-IPCF), Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Italy

^hDepartment of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126 Bologna, Italy

Figure S1. Optical spectroscopy characterization of CDs: a) A selection of normalized emission spectra ($\lambda_{excitation} = 250-550$ nm, excitation wavelength in legend); B) A selection of excitation spectra ($\lambda_{emission} = 400-550$ nm, emission wavelength in legend)

Figure S2. Optical spectroscopy characterization of CDs-Ethylenediamine (CDs-E): a) A selection of normalized emission spectra ($\lambda_{excitation} = 250-550$ nm, excitation wavelength in legend); c) A selection of excitation spectra ($\lambda_{emission} = 400-550$ nm, emission wavelength in legend)

Figure S3. UV/Vis absorption spectra of CDs (black line) and CDs-E (red line)

Figure S4. Comparison of normalized emission spectra of CDs (black line) and CDs-E (red line). Excitation wavelengths: 250, 300, 350, 400, 450, 500 and 550 nm

Figure S5. Comparison of excitation spectra of CDs (black line) and CDs-E (red line). Emission wavelengths: 450, 500, 550 nm.

Table S1. Luminescence lifetimes of CDs-E and CDs. Samples were excited at 408 nm, luminescence lifetimes were recorded at different emission wavelengths.

λ _{emission} (nm)	CDs-E		CDs	
430	1.70 ns (62 %)	6.60 ns (38 %)	1.60 ns (69 %)	7.20 ns (31 %)
450	2.00 ns (57 %)	7.80 ns (43 %)	1.87 ns (57 %)	7.51 ns (43 %)
470	2.00 ns (52 %)	8.20 ns (48 %)	1.97 ns (52 %)	8.37 ns (48 %)
490	2.20 ns (48 %)	8.50 ns (52 %)	2.27 ns (45 %)	8.67 ns (55 %)
510	2.50 ns (49 %)	8.20 ns (51 %)	2.40 ns (42 %)	8.87 ns (58 %)
530	2.45 ns (45 %)	8.80 ns (54 %)	2.57 ns (43 %)	8.93 ns (57 %)

Figure S6. Photoluminescence lifetimes of CDs and CDs-E: a) Decays recorded on different luminescence wavelengths of CDs; b) Lifetimes of CDs on $\lambda_{emission} = 450$ nm; c) Decays recorded on different luminescence wavelengths of CDs-E; d) Lifetimes of CDs-E on $\lambda_{emission} = 450$ nm.

Figure S7. Quantitative XPS analysis of CDs (black bar) and CDs-E (red bar).

 Table S2. Zeta potential measurements of CDs and CDs-E aqueous dispersions estimated via the Dynamic Light Scattering (DLS) technique.

SAMPLE	PDI (Polydispersity index)	ZETA POTENTIAL (mV)
CDs	0.192 ± 0.038	-23.40 ± 0.87
CDs-E	0.465 ± 0.051	-32.70 ± 2.36

Figure S8. a) UV/Vis absorption spectra of $HAuCl_4 2.5 \cdot 10^{-4}$ mol/L and CDs-E in ultrapure water; b) Control experiment of CDs-Au nanohybrid synthesis, absorption spectral changes in darkness conditions using CDs-E.

Figure S9. Control experiment performed with CDs as reducing and capping agent: a) Blue (420-430 nm) light irradiated sample, b) Control in darkness condition.

Figure S10. TEM images of CDs-Au nanohybrid before and after purification

Figure S11. a) SEM micrograph of CDs-Au nanohybrid (scalebar 20 nm). b) Energydispersive X-ray spectroscopy (EDS) characterization of CDs-Au nanohybrid on the SEM micrograph area of Fig. S11a.

Figure S12. Current (μA) versus hydroquinone concentrations (μM) for two tests performed for HQ detection with the same CDs-Au/SPCE sensor. Test 2 was replied after one week under identical operating conditions.