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I. DENSITY FUNCTIONAL THEORY DETAILS

First- principles density functional theory (DFT) calculations were done based on plane wave self-consistent field
(PWscf) and ultrasoft pseudopotential [1] method as treated in the generalized gradient approximation [2] and
implemented in Quantum Espresso package (version 7.1) [3]. Brillouin zone was sampled using Monkhorst–Pack
scheme. The cutoff energy for the plane-wave-basis set (Ecut) and k-mesh were chosen with a convergence threshold
for self-consistency of 10−8 Ry. DFT input parameters of this article are summarized in Table I. The electron
dispersion for each material was graphed along high symmetry k-points, and the conduction bands were shifted to
match the experimental band gap. The DFT calculation parameters are provided in Table.I. The experimental lattice
constant of 2.464 Å for carbon family, a = 3.31 Å, and b = 4.37 Å for phosphorene [4] were taken from literature.
A vacuum layer of 15 Å along c-crystal axis was applied to eliminate the interactions between the 2D layer and
its periodic images. The force on atoms along the c-axis was negligible which indicates a vacuum layer of 15 Å is
sufficient. To have localized orbitals, maximally localized Wannier functions were used which represent a successful
reproduction of band structures. The Engel–Vosko exchange functional [5] which was employed for band structure
calculations includes an improvement factor (F ev93) with a Padé form that is multiplied by LDA-like part of the
functional.

F ev93 =
1 + α1g

2 + α2g
4 + α2g

6

1 + β1g2 + β2g4 + β2g6
(1)

Where g = |∇n|/2nkF and kF = 3
√
(3nπ2) are the reduced gradient and the Fermi momentum.

TABLE I. DFT and Wannierization parameters for monolayer graphene (MLG), bilayer graphene (BLG), trilayer graphene
(TLG), monolayer phosphorene (MLP), bilayer phosphorene (BLP), and trilayer phosphorene (TLP).

Material Cutoff energy (Ry) k-mesh Wan-mesh Ewan
g (eV) EExp

g (eV)

MLG 60 19× 19× 1 200 0.277 0.00
AA-BLG 70 19× 19× 1 300 0.155 0.00
AB-BLG 60 19× 19× 1 260 0.151 0.00
Graphite 60 19× 19× 1 225 0.103 0.00
ABA-TLG 65 19× 19× 1 210 0.015 0.00
ABC-BLG 65 35× 35× 1 180 0.018 0.00

MLP 70 15× 11× 1 320 0.514 1.75
BLP 70 15× 11× 1 290 0.397 1.40
TLP 70 30× 22× 1 180 0.251 1.02

II. FULL BAND STRUCTURES

The full band structures of carbon-family materials and trilayer phosphorene are shown in Figs. 1 and 2, respectively.
The effect of van der Waals correction on the band structure of monolayer phosphorene is shown in Fig. 3. This
demonstrates that the band structures with and without van der Waals correction are virtually indistinguishable and
therefore the van der Waals correction is not expected to affect the calculated Nernst coefficients.
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FIG. 1. DFT (orange solid lines) and wannierized (blue dashed lines) structure of graphite (a), monolayer (b), AB stacked
bilayer (c), AA stacked bilayer (d), ABA stacked trilayer (e), and ABC stacked trilayer graphene (f). In each case zero is the
intrinsic Fermi level.
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FIG. 2. Wannierized band structure (blue dashed lines) of trilayer phosphorene along with DFT bands (orange solid lines).
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FIG. 3. The band structure of monolayer phosphorene calculated with and without van der Waals correction (blue dashed and
orange solid lines, respectively).
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III. SCATTERING RATES

Electron-phonon and ionized impurity scattering rates were computed using ElecTra package which requires Fermi
surface (carried out by Quantum Espresso) and physical properties of each material. ElecTra code takes various
scattering mechanisms into account, namely acoustic phonon deformation potential, polar optical phonons and ionized
impurity scattering. The scattering rates’ input parameters were adopted from experiments when available; otherwise,
we computed them. Table II provides an overview of the input parameters for the materials investigated in this study.

TABLE II. Acoustic (Da) and optical (Do) deformation potentials for electrons (e) and holes (h), bulk modulus (E), shear
modulus (G), dielectric constant (ϵ), ionized impurity charge (z), and phonon frequency (ωph) used in this work.

Material Da
e (eV) Da

h (eV) Do
e (eV/A) Do

h (eV/A) E (Pa) G (Pa) ϵ z ωph (cm−1)

MLG 70 [6] 51 [6] 100 [7] 100 [7] 1× 1012 [8] 2.8× 1011 [8] 9.30 [9] 1 1586 [10]
AA-BLG 6.96 7.25 0.93 [11] 2.83 [11] 2×1012 [12] 2.205×1011 [12] 3.5 [13] 1 1587 [10]
AB-BLG 7.5 5.8 1.01 [14] 2.78 [14] 2.5× 1012 [15] 1.64× 1011 [16] 8 [17] 1 1588 [10]
ABA-TLG 4.78 5.01 0.56 1.49 3.25× 1012 [18] 4.7× 1011 [18] 6.2 [19] 1 1586 [10]
ABC-TLG 4.15 4.90 0.55 1.47 3.31× 1012 [20] 1.3× 1011 [20] 5.4 [19] 1 1586 [10]
Graphite 0.45 [21] 0.50 [21] 0.249 [22] 0.253 [22] 3.8× 1010 [23] 4.2× 109 [23] 17.1508 [9] 1 1582 [10]
MLP 1.33 [24] 1.11 [24] 6.2 [25] 2.2 [25] 1.66× 1011 [26] 4.1× 1010 [26] 2.6 [27] 1 438 [28]
BLP 1.40 [24] 1.65 [24] 1.7 [25] 2.28 [25] 1.62× 1011 [26] 3.8× 1010 [26] 2.9 [29] 1 441 [28]
TLP 1.51 [24] 1.62 [24] 0.50 [30] 0.42 [30] 1.59× 1011 [26] 3.7× 1010 [26] 3.5 [29] 1 439 [28]
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