Supporting Information

Superalkali halide perovskites with suitable direct band gaps for photovoltaic applications

Tingwei Zhou*, Anlong Kuang

Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China **Corresponding Author** *Email: twzhou@swu.edu.cn

Fig. S1 (a-c) The energies of the cubic $Li(H_2O)_4PbI_3$, $Li(NH_3)_3PbI_3$ and $Li(NH_3)_4PbI_3$ perovskites with different lattice parameters, their lowest energies are set to 0 eV/unit-cell, respectively.

Fig. S2 The diagram of A-site cations and the BX₃ frame for the AMI₃ (A = Cs, Li(H₂O)₃, Li(H₂O)₄, Li(NH₃)₃ and Li(NH₃)₄, M = Sn and Pb) perovskites.

Fig. S3 (a, c, d) The band structures, and total and partial DOSs for the cubic Li(H₂O)₄PbI₃, Li(NH₃)₃PbI₃ and Li(NH₃)₄PbI₃ perovskites, respectively. The dotted line represents Fermi level, which is set to zero. (b) The hole and electron effective masses $\binom{m_h^* and m_e^*}{m_e}$ and exciton binding energy (E_b) of the cubic Li(H₂O)₄PbI₃ perovskites, respectively.

Fig. S4 The AIMD simulated energy and temperature curves (a,b) and structures (d,e), the cubic $Li(H_2O)_3SnI_3$ and $Li(H_2O)_3PbI_3$ perovskites with a $3\times3\times3$ supercell under 300 K and 10^5 Pa, respectively. Here, $Li(H_2O)_3$, I, Sn and Pb is shown in the insert (c). Atomic colors: H (white), Li (purplish red), O (red), I (orange), Sn (silver) and Pb (black).