Supporting Information

Atomic-Scale Stress Modulation of Nanolaminate for Micro-LED

Encapsulation

Di Wen^{‡1}. Jiacheng Hu^{‡1}. Ruige Yuan¹. Wang Li¹. Kun Cao^{*1}.Rong Chen ^{*1}

¹State Key Laboratory of Intelligent Manufacturing Equipment and Technology. School of Mechanical Science and Engineering. Huazhong University of Science and Technology. Wuhan 430074. Hubei. People's Republic of China.

Figure S1. XPS spectra of SiO₂ film with various plasma power. (a) full spectrum. (b) C 1s.

Figure S2. The effect of temperature on the growth per cycle and refractive index of SiO₂ thin film

Figure S3. The effect of plasma power on the transmittance and reflectance of SiO_2 thin film

Figure S4. The effect of temperature on the transmittance and reflectance of SiO_2 thin film

Figure S5. The structure of the nanolaminate with different pairs order. (a) $SA_{1/1.}$ (b) $SA_{2/1}$

Figure S6. FTIR spectra of thin film (T-ALD Al₂O₃. PE-SiO₂. SA_{1/1} and SA_{2/1}).

Figure S7. The extinction coefficient κ of SiO₂. Al₂O₃ thin film, SA_{1/1}, and SA_{2/1}

Figure S8. The reflectance of SiO_2 . Al_2O_3 and $SA_{2/1}$ thin film

Figure S9. AFM of thin films. (a) SiO_2 . (b) Al_2O_3 thin film. (c) $SA_{2/1}$ and (c) $SA_{1/1}$.

Figure S10. Ultra-depth 3D microscope image of thin films after aging condition (60°C/90% RH).

Figure S11. The correlation of the strain and bending radius.

Figure S12. Ultra-depth 3D microscope image of (a) bare Micro-LED and Micro-LED with encapsulation of (b) PE-ALD-SiO₂. (c) T-ALD-Al₂O₃. (d) SA_{1/1}. and (e) SA_{2/1}

Figure S13. Ultra-depth 3D microscope image including bright field and SEM image for encapsulated Micro-LED after the deposition of 15 nm T-ALD Al₂O₃.

	Material	Process	Precursor	Process temperature (°C)	Thickne ss (nm)	Residual stress (MPa)	Ref.
	SiO ₂ /Al ₂ O ₃	PEALD /ALD	TDMAS, O ₂ plasma; TMA, O ₂	100	10/20/50	<5	This work
Mono- layer	Polysilicon	CVD /annealing	SiH_4	>1000	2000	5	1
	SiNx	PECVD	SiH_4 , NH_3 , N_2	300	—	4	2
	Ir	MS	Ir		15.8	-2.89	3
	SiN _x H _y	PECVD	SiH ₄ , NH ₃ , N ₂	125	680	5.1	4
	Al_2O_3	ALD	TMA, O_3/H_2O	500	60	50	5
	Al_2O_3	ALD	TMA, H_2O	300	100	180	6
	TiO ₂	ALD	TDMAT, H_2O	40	30	40	7
Multi- film	Al ₂ O ₃ /TiO ₂ / pV ₃ D ₃	ALD /iCVD	TMA,H ₂ O/ TDMAT, H ₂ O; PV3D3	300/40/	115	~50	7
	HfO ₂ /SiO ₂	PEALD	TDMAH, O ₂ plasma/BDEAS, O ₂ plasma	100/50	2300	120	8
	SiO _x N _y /SiO ₂ /SiO _x N _y	PECVD /PEALD	SiH ₄ ,mixture gas plasma/DIPAS, N ₂ O plasma	80	1000	-72	9
	HfO ₂ /Si	Evaporation	Hf		9100	-34.5	10
	Al ₂ O ₃ /p(CHA-co- V ₃ D ₃)	ALD/ iCVD	TMA, H ₂ O; CHA, V ₃ D ₃ , TBPO	90/35	200	22.5	11
	Al ₂ O ₃ /Y ₂ O ₃	ALD	TMA, H ₂ O/ Y- (CpBu) ₃ , H ₂ O	300	83	-40	12
	Al ₂ O ₃ /SiO2	ALD/IBS	TMA, H_2O	200	628	38	13
	SAOLs /Al ₂ O ₃	MLD/ALD	7- OTS, H ₂ O/ TMA, H ₂ O	80	152.5	-131.1	14

Table 1 Comparison with other literature on the residual stress of thin films

Reference

- J. Yang, H. Kahn, A. Q. He, S. M. Phillips and A. H. Heuer, J. Microelectromechanical Syst., 2000, 9, 485–494.
- C. Iliescu, M. Avram, B. Chen, A. Popescu, V. Dumitrescu, D. P. Poenar, A. Sterian, D. Vrtacnik, S. Amon and P. Sterian, *J. Optoelectron. Adv. Mater.*, 2011, 13, 387–394.
- D. M. Broadway, J. Weimer, D. Gurgew, T. Lis, B. D. Ramsey, S. L. O'Dell,
 M. Gubarev, A. Ames and R. Bruni, *EUV X-ray Opt. Synerg. between Lab. Sp. IV*, 2015, 9510, 95100E.
- B. A. Walmsley, Y. Liu, X. Z. Hu, M. B. Bush, J. M. Dell and L. Faraone, J.
 Microelectromechanical Syst., 2007, 16, 622–627.
- 5 G. Krautheim, T. Hecht, S. Jakschik, U. Schröder and W. Zahn, *Appl. Surf. Sci.*, 2005, **252**, 200–204.
- O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula and R. L. Puurunen, *Thin Solid Films*, 2014, 552, 124–135.
- S. Y. Jeong, H. R. Shim, Y. Na, K. S. Kang, Y. Jeon, S. Choi, E. G. Jeong, Y. C. Park, H. E. Cho, J. Lee, J. H. Kwon, S. G. Im and K. C. Choi, *npj Flex. Electron.*, 2021, 5, 1–9.
- V. Beladiya, T. Faraz, P. Schmitt, A. S. Munser, S. Schröder, S. Riese, C.
 Mühlig, D. Schachtler, F. Steger, R. Botha, F. Otto, T. Fritz, C. Van Helvoirt,
 W. M. M. Kessels, H. Gargouri and A. Szeghalmi, *ACS Appl. Mater. Interfaces*, 2022, 14, 14677–14692.
- 9 Z. Chen, Z. Wang, Y. Zhou, J. Zhang, Z. Li, C. Li, P. Chen and Y. Duan, *Opt. Express*, 2021, **29**, 33077.
- J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S.
 Papernov, A. Kozlov and R. D. Hand, *Opt. InfoBase Conf. Pap.*, 2010, 2–4.
- 11 Y. C. Park, T. Kim, H. R. Shim, Y. W. Choi, S. Hong, S. Yoo and S. G. Im,

Appl. Surf. Sci., 2022, 598, 153874.

- J. P. Niemelä, B. Putz, G. Mata-Osoro, C. Guerra-Nuñez, R. N. Widmer, N.
 Rohbeck, T. E. J. Edwards, M. Döbeli, K. Maćkosz, A. Szkudlarek, Y.
 Kuzminykh, X. Maeder, J. Michler, B. Andreaus and I. Utke, ACS Appl. Nano
 Mater., 2022, 5, 6285.
- 13 H. Liu, L. Jensen, P. Ma and D. Ristau, *Appl. Surf. Sci.*, 2019, **476**, 521–527.
- K. H. Yoon, H. S. Kim, K. S. Han, S. H. Kim, Y.-E. K. Lee, N. K. Shrestha, S.Y. Song and M. M. Sung, ACS Appl. Mater. Interfaces, 2017, 9, 5399–5408.