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1 Model configuration

Details of the model. To limit the simulation time, only 1
8 of the square

prism was simulated. The whole unit cell was generated by symmetry and the
overall energy was obtained by multiplying by a factor of 8 (Figure S1). To
account for the change in Debye length (κ−1) due to concentration variations,
the cell height was set to 10κ−1 instead of fixing it to an absolute length.
Similarly, the cell width (2w) was also defined relative to κ−1, where the exact
relationship is described below. The “extra fine mesh” option was chosen for
the mesh size in the COMSOL Multiphysics® software. The average simulation
time for each set of parameters was 10.6 s on a computer with an i5-9500 CPU
and 8 GB RAM, and a total of 90000 (6000× 15 steps in κ−1) conditions were
simulated.

Definition of half width (w) (Figure S1c). The half width (w) of the
model was limited to roughly (R + κ−1) to shorten the simulation time. More

specifically, w was defined by this relationship: w = a[ceil(R+κ−1

a )+0.5], where
R, κ−1 and a were the particle radius, Debye length, and defect separation
respectively. For Conc = 0.1mM, w was further limited to approximately (R+
0.7κ−1) because κ−1 was much longer at this low concentration which greatly
increased the simulation time. However, for all the cases, the potential at the
edge of the unit cell was confirmed to decay to at least 20% (<< 1

e = 36.8%)
of the original particle potential so the width of model should already be long
enough to capture most of the potential changes in the solution. Also, the half
width (w) was defined as multiples of 0.5a, such that the full width (2w) would
be multiples of the defect separation (a). This ensured all the defects were lying
within the surface, and this square surface with defects was essentially a unit
cell where an infinitely large version of itself could be constructed simply by
translation.
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Figure S1: (a) Only 1
8 of the square prism is simulated. The whole unit cell is

generated by symmetry and the overall energy is obtained by multiplying by a
factor of 8; (b) The base of the model which contains the defects; (c) The half
width (w) of the square prism is not fixed, but defined relative to the particle
radius (R), defect separation (a), and Debye length (κ−1).
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2 Electrostatic free energy (Fel) derivation

The electrostatic free energy (Fel) is calculated following the expressions
derived by Theodoor and Overbeek,1 and adapted by Krishnan.2 The important
equations in the main manuscript are repeated here followed by the derivations.
Table S1 summarizes the equations in relation to the original papers.

Table S1: Summary of equation numbers in this work, Theodoor and Overbeek,1

and Krishnan.2

This work Theodoor and Overbeek1 Krishnan2

(S2) (6) /
(S3) (6) (1)

(S4) and (S8) (15) (5)
(S5) and (S11) (5) (2)
(S6) and (S12) (7) (3)

(S7) (13) in text before (5)

We denote φ as the dimensional potential with a unit of V, and ψ as the
dimensionless potential. They can be interconverted by multiplying/dividing by
the thermal voltage (Eq. S1). The additional subscript of φ0 clarifies that this
is the potential at the surface, but not that in the electrolyte.

ψ =
eφ

kT
(S1)

Firstly, the electrostatic potential (dimensional φ or dimensionless ψ) is
obtained by solving the Poisson-Boltzmann equation (Eq. S2).

∇2φ = − ρ

ϵ0ϵr
(S2)

where ρ is the charge density (Cm−3), ϵ0ϵr is the permittivity of the medium.

For a symmetric monovalent electrolyte (e.g. NaCl), the expression simplifies
to Eq. S3, where κ−1 is the characteristic Debye length of an electrical double

layer. ( 1κ =
√

ϵ0ϵrkT
2e2I , where e is the elementary charge and I is the ionic

strength (number m−3).)

∇2ψ = κ2 sinh(ψ) (S3)

This non-linear Poisson-Boltzmann equation is best solved numerically, which
can be done by the software COMSOL Multiphysics® throughout the whole
model to obtain a potential map in 3D. The computed spatial distribution of
ψ is subsequently used to calculate the electrostatic free energy (Fel), which
has 3 energy components: electrostatic potential energy (Uel), configurational
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entropy involved in the distribution of ions (∆S), and chemical free energy due
to the adsorption and dissociation of ions (Fchem) (Eq. S4–S7),

Fel = Uel − T∆S + Fchem (S4)

Uel =
1

2

∫
A

σφ0 dA− c0 k T

∫
V

ψ sinh(ψ) dV (S5)

∆S = 2 c0 k

∫
V

[
− ψ sinh(ψ) + cosh(ψ)− 1

]
dV (S6)

Fchem = −
∫
A

σ φ0 dA (S7)

where c0, σ, and φ0 are the bulk salt concentration (number m−3), surface
charge density (Cm−2), and surface potential (V) respectively. σ can be computed
from φ by σ = −ϵ∂φ∂n .

Substituting them back to Fel gives Eq. S8.

Fel = −1

2

∫
A

σφ0 dA+ c0 k T

∫
V

ψ sinh(ψ) dV − 2 c0 k T

∫
V

[
cosh(ψ)− 1

]
dV

(S8)

Note that a boundary condition of constant potential is used in this work,
which has a contribution from Fchem (Eq. S7). If a boundary condition of
constant charge is used, the expression is simply Fel, cc = Uel − T∆S without
the Fchem term, which yields Eq. S9.

Fel, cc = +
1

2

∫
A

σφ0 dA+ c0 k T

∫
V

ψ sinh(ψ) dV − 2 c0 k T

∫
V

[
cosh(ψ)− 1

]
dV

(S9)

Nevertheless, both Fel and Fel, cc consist of a surface integral and two volume
integrals. The surface integral should be performed on all the surfaces. For our
model, this would be the particle, the defects, and the normal surface. On the
other hand, the volume integrals should be evaluated for the bulk electrolyte.

2.1 Derivation from Eq. S2 to S3

We begin with the standard Poisson-Boltzmann equation (Eq. S2).

∇2φ = − ρ

ϵ0ϵr
(S2)

The charge density ρ (Cm−3) is the product of charges zie (C) and the
ion concentration n (number m−3), where zi is the charge number, e is the
elementary charge, and c0 is the bulk salt concentration (Eq. S10).
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ρ =
∑
i

zie︸︷︷︸
charges

n︸︷︷︸
conc.

=
∑
i

zie [c0 exp(−zi ψ)]
(S10)

Substitute Eq. S10 into Eq. S2 yields the following:

∇2φ = − e

ϵ0ϵr

∑
i

zi [c0 exp(−zi ψ)]

Consider a symmetric electrolyte (e.g. NaCl) with an equal number of “+z”
and“-z” ions, the expression becomes:

∇2φ = − e

ϵ0ϵr

(+z) [c0 exp(−z ψ)]︸ ︷︷ ︸
+z ions

+(−z) [c0 exp(+z ψ)]︸ ︷︷ ︸
-z ions


∇2φ = −zec0

ϵ0ϵr

[
exp(−z ψ)− exp(+z ψ)

]
Since sinh (x) = 1

2 (e
x − e−x),

∇2φ = +
2zec0
ϵ0ϵr

sinh (zψ)

Since 1
κ =

√
ϵ0ϵrkT
2e2I and I = 1

2

∑
i

ciz
2
i = c0 for a symmetric monovalent

electrolyte (z = 1),

∇2φ = κ2
(
kT

e

)
sinh (ψ)( e

kT

)
∇2φ = κ2 sinh (ψ)

The dimensional potential φ can be converted to the dimensionless potential
ψ by multiplying a factor of e

kT (Eq. S1), which gives Eq. S3.

∇2ψ = κ2 sinh(ψ) (S3)

2.2 Derivation of Eq. S5

We begin with the following expression which is Eq. 5 in Theodoor and
Overbeek1 and Eq. 2 in Krishnan2.

Uel =
1

2

∫
A

σφ0 dA+
1

2

∫
V

ρφ dV (S11)

The first term already matches the final form in Eq. S5, but the second term
can be further simplified. Substituting the expression for charge density (ρ)
(Eq. S10) into second term of Eq. S11 gives:

7



1

2

∫
V

ρφ dV =
1

2

∫
V

φ
∑
i

zie [c0 exp(−zi ψ)] dV

For a symmetric monovalent electrolyte (e.g. NaCl), z = ±1:

1

2

∫
V

ρφ dV =
1

2

∫
V

φ
[
(+1)e [c0 exp(−ψ)]︸ ︷︷ ︸

z=+1

+(−1)e [c0 exp(+ψ)]︸ ︷︷ ︸
z=−1

]
dV

=
1

2

∫
V

φ c0 e[exp(−ψ)− exp(+ψ)] dV

Since sinh (x) = 1
2 (e

x − e−x),

1

2

∫
V

ρφ dV =
1

2

∫
V

−2φ c0 e sinh (ψ) dV

= −c0 e
∫
V

φ sinh (ψ) dV

Convert dimensional potential φ to dimensionless potential ψ with Eq. S1,

1

2

∫
V

ρφ dV = −c0 e
∫
V

ψ

(
kT

e

)
sinh (ψ) dV

= −c0 k T
∫
V

ψ sinh(ψ) dV

Substitute this simplified 1
2

∫
V
ρφ dV term back to Eq. S11 yields Eq. S5:

Uel =
1

2

∫
A

σφ0 dA− c0 k T

∫
V

ψ sinh(ψ) dV (S5)

2.3 Derivation of Eq. S6

We begin with Eq. 7 in Theodoor and Overbeek1 and Eq. 3 in Krishnan2.

∆S = k

∫
V

{∑
i

c0[zi ψ exp(−zi ψ) + exp(−zi ψ)− 1]

}
dV (S12)

For a symmetric monovalent electrolyte (e.g. NaCl), z = ±1:

∆S = k

∫
V

{
c0[ψ exp(−ψ) + exp(−ψ)− 1]︸ ︷︷ ︸

z = +1

+ c0[−ψ exp(+ψ) + exp(+ψ)− 1]︸ ︷︷ ︸
z = -1

}
dV

= c0 k

∫
V

{
ψ

[
exp(−ψ)− exp(+ψ)︸ ︷︷ ︸

sinh (x)= 1
2 (e

x−e−x)

]
+

[
exp(−ψ) + exp(+ψ)︸ ︷︷ ︸

cosh (x)= 1
2 (e

x+e−x)

]
− 2

}
dV

= c0 k

∫
V

{
ψ

[
− 2 sinh (ψ)

]
+

[
2 cosh (ψ)

]
− 2

}
dV

Upon further simplification, it becomes Eq. S6:

∆S = 2 c0 k

∫
V

[
− ψ sinh(ψ) + cosh(ψ)− 1

]
dV (S6)
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3 Comparing perfect and defective surfaces

By comparing perfect (uniformly charged) and defective (non-uniformly charged)
surfaces, the objective is to identify conditions where defects are expected to
play a significant role. This can be done by comparing perfect and defective
surfaces which have the same effective surface potential (VEff ). For perfect
surfaces, VEff is simply the surface potential (VSurf ) due to the lack of defects.
For defective surfaces, VEff is the area-averaged surface potential of the normal
surface and the defects, resulting from various combinations of the surface
potential (VSurf ), defect potential (VDef ) and defect density (DD).

Table S2: Parameter space of perfect (uniformly charged) surfaces without
defects (DD = 0 and VDef = 0mV), which covers 1260 unique combinations of
these 4 parameters (VPart, VSurf , Conc, R). For each condition, the particle is
moved towards the surface in 15 steps (D).

Parameter Values Unit

VPart Particle potential -51.4, -38.5, -25.7, -12.8 mV
VSurf Surface potential -51.4 to 0.0 (21 steps) mV
VDef Defect potential 0.0 mV
DD Defect density 0.0 /
Conc Salt concentration 0.1, 0.5, 1.0 mM
R Particle radius 0.5, 1.5, 2.5, 3.5, 4.5 nm
D Particle-Surface separation 0.1 to 4.1 (15 steps) κ−1 (Debye length)

In our defect-containing model, we considered 6 parameters: VPart, VSurf ,
VDef , DD, Conc, and R. For perfect surfaces, since both DD and VDef

were set to 0, only 4 variables (VPart, VSurf , Conc, R) remained. To explore
the effectiveness of VEff as a descriptor, we conducted additional simulations
spanning 1260 unique conditions of these 4 parameters for perfect surfaces
(Table S2). For VPart, Conc, and R, the same values as those in the defective
parameter space (Table 1) were used to perform parametric sweeps. However,
for VSurf , we explored 21 steps from -51.4 mV to 0 mV to encompass the entire
range of VEff . This extensive range in VSurf was selected to account for the
various combinations of VDef and DD that could yield a broad spectrum of
VEff . Throughout all simulations, the Hamaker constant was fixed at 100 zJ to
calculate the van der Waals contributions.

To evaluate how well VEff could represent defective surfaces, we examined
whether the interaction energy barriers aligned when both perfect and defective
surfaces exhibited the same VEff . Specifically, when the interaction energy
barriers were plotted against VEff , the energy barriers of both the perfect
and defective cases should fall on the same curve in the ideal case when VEff

could fully describe defective surfaces. However, such perfect alignment was not
anticipated. To quantify the degree of alignment, we computed the coefficient of
determination (R2) for each case (Eq. S13). This involved treating the defective
cases as the “data points” (yi) and the perfect surfaces as the “predicted values”
(ŷi).
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R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
(S13)

where R2 is the coefficient of determination, yi is the observed value at point i,
ŷi is the predicted value at point i, and ȳ is the mean of the observed values.
Larger R2 values indicate better agreement between the perfect and defective
surfaces, and hence lower importance of non-uniformities in the surface charge
distribution.

Figure S2: Box plot showing the distribution of R2 values by parameters (VPart,
R, and Conc).

Our analysis yielded a total of 60 curves depicting the interaction energy
barriers against VEff , considering all the possible combinations of VPart, R,
and Conc (Figure S3-S6). To provide a more meaningful overview, we examined
the distribution of the 60 R2 values by parameters (Figure S2). Notably, there
were some instances when the defective energy barriers mostly located near the
perfect surface curves, as indicated by the high R2 values > 0.75. However, in
other cases, the dispersion of energy barriers in the defective scenarios deviated
significantly from the perfect surface curves, resulting in small and even negative
R2 values. From the box plot in Figure S2, it appears that the largest R2 values
could be achieved when VPart was the most negative (-51.4 mV), R was the
largest (4.5 nm), and Conc was the lowest (0.1 mM), which suggested that
under these conditions, perfect surfaces provided a reasonable description of
defective surfaces with the same VEff . Among these factors, VPart had the
most pronounced influence on the resultant R2 values, while R and Conc had
comparatively less effect on the outcome. Specifically, when particles possessed
highly negative charges (VPart = -51.4mV), the deviations in the energy barriers
between the two scenarios were relatively small (large R2 values). However, as
VPart became less negative, there was a significant decrease in the R2 values,
highlighting the growing importance of including defects in the model. Consequently,
defects were explicitly considered in our study to comprehensively describe
surface interactions and capture the nuanced impacts of defects on these interactions.
Furthermore, the defect-containing model also enabled the possibility to explore
surface heterogeneity and examine the effect of local conditions (VDef and DD),
which would not be captured by VEff alone.
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Figure S3: 15 plots of interaction energy barriers against the effective surface
potential (VEff ) comparing perfect and defective surfaces, with VPart fixed at
-51.4mV while varying R and Conc.
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Figure S4: 15 plots of interaction energy barriers against the effective surface
potential (VEff ) comparing perfect and defective surfaces, with VPart fixed at
-38.5mV while varying R and Conc.
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Figure S5: 15 plots of interaction energy barriers against the effective surface
potential (VEff ) comparing perfect and defective surfaces, with VPart fixed at
-25.7mV while varying R and Conc.
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Figure S6: 15 plots of interaction energy barriers against the effective surface
potential (VEff ) comparing perfect and defective surfaces, with VPart fixed at
-12.8mV while varying R and Conc.
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4 Energy distributions with varying Hamaker
constants

Figure S7: (a) Distribution of energy barriers and (b) percentage of data points
below kT with varying Hamaker constants (AH).

The Hamaker constant describing the interaction between TiO2 and Au
can be estimated by taking the geometric mean of the individual AH , i.e.√

(AH,TiO2
)(AH,Au). The AH of TiO2 in water is fairly consistent in the

literature (∼50 zJ),3,4 but that of Au can vary considerably depending on the
study (∼100–300 zJ).5,6 Therefore, a reasonable estimate of the AH between
TiO2 and Au ranges from

√
(50)(100) ≈ 70 zJ to

√
(50)(300) ≈ 120 zJ, where

AH,TiO2−Au = 100 zJ is used in this work for the sake of discussion. Within this
range of AH , although the exact distribution of energy barriers varies slightly,
the qualitative conclusions in the paper still hold. Moreover, the whole range of
AH (0–150 zJ, steps of 10 zJ) is considered when fitting the data with a support
vector machine for predicting whether the interaction is favorable.
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5 Representative cases of energy barriers

In our model, we investigated the colloidal interaction between a negatively
charged particle and a negatively charged surface with defects. Specifically, our
focus was on understanding whether colloidal particles possess sufficient thermal
energy to overcome the energy barrier and potentially adsorb onto the surface.
This energy barrier arises from the balance between the repulsive electrostatic
forces and the attractive van der Waals forces, similar to the treatment in the
classical DLVO theory. The total interaction energy (Etot) is the sum of the
repulsive electrostatic free energy (Fel) and the attractive van der Waals energy
(Evdw), and the energy barrier is determined by the maximum of Etot.

To illustrate the different types of energy barriers resulting from Fel and
Evdw, we have included three representative cases in Figure S8: a) Energy
barrier > kT , b) Energy barrier < kT , c) No apparent energy barrier.

The conditions in Figure S8a are the same as those in Figure 2 of the
manuscript (VPart = −51.4mV, VSurf = −51.4mV, VDef = +12.8mV, DD =
0.2, Conc = 1mM, R = 2.5 nm). In these 3 examples, the Hamaker constant
(AH) and particle radius (R) are kept constant, such that the attractive van der
Waals components remain identical. However, by varying the surface potential
(VSurf ) and defect density (DD), we can adjust the degree of repulsion between
the particle and the surface, and examine its effect on the interaction energy
barrier.

In Figure S8a, Fel is sufficiently repulsive that the energy barrier exceeds
kT , even when considering the attractive Evdw. This implies that adsorption
is unlikely under these conditions. However, when we reduce VSurf from -
51.4mV to -38.5mV (Figure S8b), Fel remains repulsive but the resulting energy
barrier now falls below kT , which suggests that adsorption could be possible
with thermal fluctuations. In Figure S8c, we increase DD from 0.2 to 0.3. This
results in an even weaker repulsive Fel, and when combined with the attractive
Evdw, there is no apparent energy barrier for the particle to move towards the
surface.

To examine whether additional data points are required between the first and
second points (0.1 and 0.4 κ−1) along the x-axis (particle-surface separation),
we have also simulated four additional data points between them for the 3
representative cases, as indicated by red diamonds in the energy curves in Figure
S8. Notably, the inclusion of these points does not affect the interaction energy
barriers, which are extracted as the maximum energy of Etot. This observation
agrees with our analysis of the distribution of energy barriers depicted in Figure
S9, which indicates that the majority of energy barriers happen at particle-
surface separations of 0.5 – 1.0 κ−1. Therefore, additional simulations between
the first and second points (0.1 and 0.4 κ−1) are unlikely to yield substantial
changes in the interaction energy barriers.
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Figure S8: Three representative cases of energy barriers illustrated by varying
VSurf and DD, while keeping other factors the same (VPart = −51.4mV,
VDef = +12.8mV, Conc = 1mM, R = 2.5 nm). (a) Energy barrier > kT
(VSurf = −51.4mV, DD = 0.2, identical conditions as Figure 2); (b) Energy
barrier < kT (VSurf = −38.5mV, DD = 0.2); (c) No apparent barrier
(VSurf = −38.5mV, DD = 0.3). The red diamonds are additional data points
simulated between 0.1 and 0.4 κ−1 to demonstrate that they do not affect the
energy barriers.
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Figure S9: Distribution of particle-surface separations at the energy barriers.
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6 Pairwise comparison of parameters by the Tukey’s
HSD (honestly significant difference) test

Figure S10: The q-statistics obtained by performing pairwise comparison with
Tukey’s HSD (honestly significant difference) test.
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7 Logistic regression for classifying the “below
kT” and “above kT” cases

The colloidal interaction was simulated under 6000 unique conditions, where
each condition is a specific combination of these 6 parameters: VPart (particle
potential), VSurf (surface potential), VDef (defect potential),DD (defect density),
Conc (concentration of salt), and R (particle radius). For each set of parameters,
the interaction energy barrier is extracted, and is classified into one of these two
classes based on the energy barrier: “below kT” (favorable) or “above kT”
(unfavorable). Accordingly, the 6000 cases have 6 parameters (VPart, VSurf ,
VDef , DD, Conc, R) as the input and “below kT” or “above kT” as the
label, which becomes a binary classification problem and can be modelled by
logistic regression. The logistic regression equations with the fitted coefficients
are shown in Eq. S14 and S15.

y = 6.572 + 2.516||VSurf ||+ 2.449||VPart||+ 1.696||DD||
+ 1.417||Conc|| − 1.382||R||+ 1.096||VDef ||

(S14)

z =
1

1 + exp (−y)
(S15)

Given a particular set of parameters, this fitted expression (Eq. S14 and
S15) can determine whether it is “below kT” or “above kT” with an accuracy
of 95% evaluated using a standard train/validation split of 80%/20%. z takes
a value between 0 and 1 since it is a sigmoid function, and it is essentially the
probability of “below kT” because the “below kT” and “above kT” cases are
arbitrarily assigned to a label of “1” and “0” respectively. Note the 6 parameters
(VPart, VSurf , VDef , DD, Conc, R) are scaled by z-score normalization before
feeding into logistic regression, where the additional || || symbol is used to denote
a normalized quantity. Z-score normalization can be performed by subtracting
the mean (µi) and dividing by the standard deviation (σi) of the distribution
(Eq. S16), where the Table S3 summarizes the µi and σi for each factor in
this study. As an example, VSurf has a mean and standard deviation of -
32.1mV and 14.36mV respectively in the distribution, which means that a
VSurf of -25mV converts to a dimensionless ||VSurf || of 0.49 after normalization

(||VSurf || = VSurf−µi

σi
= −25−(−32.1)

14.36 = 0.49). These normalized quantities are
used to visualize the decision boundary shown in Figure 4, where the x-axis
is the “Electrostatics” metric: 2.516||VSurf || + 2.449||VPart||, and y-axis is the
“Environment” descriptor: 1.696||DD||+ 1.417||Conc||.

||xi|| =
xi − µi

σi
(S16)
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Table S3: Mean (µi) and standard deviation (σi) of each variable for z-score
normalization (Eq. S16).

Parameter Unit µi σi

VPart Particle potential mV -32.10 14.36
VSurf Surface potential mV -32.10 14.36
VDef Defect potential mV +25.68 18.16
DD Defect density / 0.24 0.086
Conc Salt concentration mM 0.533 0.368
R Particle radius nm 2.5 1.414

8 Attempts to cluster data points with handcrafted
dimensionless numbers

In our model, a total of 6000 conditions were simulated by varying 6 parameters
(VPart, VSurf , VDef , DD, Conc, R). Each data point carries a label of either
“below kT” (1) or “above kT” (0) derived from its computed energy barrier.
To unambiguously specify a data point in the dataset, a particular combination
of the 6 parameters is needed. However, when fewer than 6 parameters are
considered, there will be overlapping points existing in this low-dimensional
space. By evaluating the average of the labels (0 or 1) at the overlapping points,
the probability of “below kT” can be estimated. This likelihood of “below kT”
is used to visualize the clustering of data points in Figure 4 and S11: green for
“below kT”, red for “above kT”, and yellow for the uncertain cases.

In an attempt to split the data points into regions of “below kT” and
“above kT”, the following dimensionless numbers are constructed out of the 6

parameters:
VSurf

VPart
,

VSurf

VDef
, VPart

VDef
,

(VSurf+VPart)
VDef

, DD, κ−1

R . It is noted that even

though R and VDef are not among the most influential factors as suggested by
ANOVA and logistic regression, they are involved in formulating the dimensionless
numbers such that the units can be cancelled out. Conc (mM) does not have
any complementary parameters with the same unit, and is therefore converted
to the Debye length (κ−1, nm), and divided by R (nm) to yield a dimensionless

number κ−1

R .
However, these handcrafted dimensionless numbers do not separate the “below

kT” (green) and “above kT” (red) cases well, as indicated by the lack of red
dots on the graphs, i.e. the “below kT” and “above kT” cases are overlapping,
resulting in mostly green and some yellow/orange points. The plots of DD

vs.
(VSurf+VPart)

VDef
and κ−1

R vs.
(VSurf+VPart)

VDef
are capable of separating some

red dots out of the dataset. Yet, it is also apparent that some intermediate
(yellow/orange) cases can also be found in the green region of “below kT”. By
contrast, the linear combination of z-score normalized parameters (2.516||VSurf ||+
2.449||VPart|| and 1.696||DD||+1.417||Conc||) is much more effective to cluster
the data points, as manifested by the diagonal transition from red to yellow and
eventually to green from the bottom left to the top right of Figure 4.
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Figure S11: Attempts to cluster data points into regions of “below kT” (green)
and “above kT” (red) with different combinations of dimensionless numbers.
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9 Support vector machine (SVM) for predicting
the interaction outcome

For defective surfaces, we conducted simulations covering 6000 combinations
of these 6 parameters (VPart, VSurf , VDef ,DD, Conc, R) (Table 1). Additionally,
to examine perfect surfaces without defects, we simulated an additional 1260
conditions (Table S2). This yielded a total of 6000 + 1260 = 7260 electrostatic
free energy (Fel) curves computed with the software COMSOL. However, it
is important to note that the total interaction energy (Etot) comprises both
electrostatic free energy (Fel) and van der Waals energy (Evdw). Previously,
the Hamaker constant (AH) was fixed at 100 zJ for the sake of discussion.
To consider the whole range of van der Waals interactions in the SVM, AH

was varied from 0 to 150 zJ with a step size of 10 zJ. This resulted in an
extended dataset with 7260 × 16 = 116160 entries. To effectively work with
this comprehensive dataset, we employed a Support Vector Machine (SVM) for
fitting. Similar to the logistic regression analysis described in Section 7, the
parameters were first scaled by z-score normalization before being fed into the
SVM. The 116160 energy barriers were classified into one of these two groups:
“below kT” or “above kT”. The SVM was then trained to determine the decision
boundary between these two cases given a specific set of the 7 parameters (VPart,
VSurf , VDef , DD, Conc, R, AH). An accuracy of 97% was achieved, which was
assessed by a standard train/validation split of 80%/20%. The radial basis
function (RBF) was used as the kernel of the SVM, and default C and gamma
values of the scikit-learn python package were used when training the SVM.
Alongside the prediction of “below kT” or “above kT”, a decision function
indicating the confidence of the prediction would also be outputted (a larger
absolute value means higher confidence) to alert the users for cases relatively
close to the decision boundary.
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