Supporting Information

In-situ Growth of Binder-Free CoNi_{0.5}- MOF/ CC Electrode for High-

Performance Flexible Solid-State Supercapacitor Application

Weijie Zhang[#], Zhen Cao[#], Yuying Li, Ruiting Li, Yanmei Zheng, Ping Su and

Xinli Guo*

Dr. W.J Zhang

Chongqing Key laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 40054, China

School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

Dr. Z. Cao, Dr. Y. Y. Li, Dr. R.T. Li, Pro. X.L. Guo

School of Materials Science and Engineering, Southeast University, Nanjing 211189, China

Email: guo.xinli@seu.edu.cn

Dr. Y.M. Zheng

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Dr. Ping Su

Chongqing Key laboratory of New Energy Storage Materials and Devices, School of Science, Chongqing University of Technology, Chongqing 40054, China

These authors contribute equally

Figure S1 TEM image of CoNi_{0.5}-MOF/CC with different magnification

Figure S2 high resolution SEM image of CoNi_{0.5}-MOF before and after 6000 cycles test

Figure S3 The XRD pattern of CoNi_{0.5}-MOF/CC before and after cycle test

To evaluate the stability of the CoNi_{0.5}-MOF structure during the electrochemical process, we fabricated electrodes and subjected them to 6000 cycles under a current density of 10 A g⁻¹. Comparative analysis of the scanning electron microscopy (SEM) results indicates that while there were slight changes in the morphology of CoNi_{0.5}-MOF due to expansion during the electrochemical process, the active material maintained good contact with the substrate without collapsing or detaching. This observation confirms the retention of cycle stability. Additionally, we examined the detailed structure of the electrode after cycling. Figure S3 illustrates that following electrochemical cycling, there were alterations in the lattice structure of CoNi_{0.5}-MOF, with the disappearance of typical MOF peaks and the emergence of CoNiO₂ peaks. This transformation is likely attributed to the following electrochemical reactions occurring during cycling:

$$Co^{2+} + 30H^{-} \leftrightarrow Co00H + H_2O + e^{-}$$

$$CoOOH + OH^- \leftrightarrow CoO_2 + H_2O + e^-$$

$$Ni^{2+} + 30H^- \leftrightarrow Ni00H + H_20 + e^-$$

$$NiOOH + OH^- \leftrightarrow NiO_2 + H_2O + e^-$$

Electrode Material	Capacitor	Energy	Power Density	Reference
		Density		hererenee
CoNi-MOF/AC	asymmetric	35 Wh kg ⁻¹	1450 W kg ⁻¹	2
Ni-MOF/AC	asymmetric	30.4 Wh kg ⁻¹	407.4 W kg ⁻¹	3
NiCo-LDH//AC	asymmetric	50.5 Wh kg ⁻¹	750 W kg ⁻¹	4
P-ZIF-67//AC	asymmetric	19.7 Wh kg ⁻¹	500 W kg ⁻¹	5
ZFO@NMO NSAs@rGO-NF//	asymmetric	58.6 Wh kg ⁻¹	799 W kg ⁻¹	6
MDHPC				
NiCo-MOF//(AC)	asymmetric	45.3 Wh kg ⁻¹	847.8 W kg ⁻¹	7
CoNi _{0.5} -MOF/CC// N-Gr	asymmetric	61.46 Wh kg ⁻¹	1244.56 W kg ¹	This work

Table.S1 Comparison of the performance of CoNi_{0.5}-MOF /CC// N-Gr asymmetric supercapacitors with other supercapacitors

Reference:

- [1] H. Y. Zhang, J.C. Wang, Y. Sun, X.Q. Zhang, H. Yang, B.P. Lin, Journal of Alloys and Compounds, 2021,879, 160423
- [2] S. K. Kim, Y. K. Kim, H. Lee, S. B. Lee and H. S. Park, ChemSusChem, 2014, 7, 1094-1101.
- [3] X. Chu, F. Meng, W. Zhang, H. Yang, X. Zou, S. Molin, P. Jasinski, X. Sun and W. Zheng, Nanotechnology, 2022, 33, 205403.
- [4] J. Wang, Y. Ma, X. Kang, H. Yang, B. Liu, S. Li, X. Zhang and F. Ran, J Solid State Chem, 2022, 309, 122994.
- [5] W. Wang, Y. Fang, S. Wang, Z. Zhang, R. Zhao and W. Xue, Journal of Alloys and Compounds, 2022, 900, 163532.

- [6] Z. Ma, J. Li, R. Ma, J. He, X. Song, Y. Yu, Y. Quan and G. Wang, New J Chem, 2022, 46, 7230-7241.
- [7] J. Acharya, B. Pant, G. Prasad Ojha and M. Park, J Colloid Interf Sci, 2022, 610, 863-878.
- [8] H. Li, X. Wang, L. Dai, F. Guo, H. Mi, C. Ji and L. Sun, Inorg Chem, 2022, 61, 3866-3874.