Supporting Information

Frogspawn inspired twin Mo₂C/Ni composite with conductive fibrous network as robust bifunctional catalyst for advanced anion exchange membrane electrolyzers

Zhongmin Wan^{a,b}, Linqing Wang^{a,b}, Yuheng Zhou^{a,b}, Siyuan Xu^{a,b}, Jing Zhang^{a,b}, Xi Chen^{a,b}, Shi Li^{a,b} Changjie Ou^{a,b*} and Xiangzhong Kong^{a,b*}

^a College of Mechanical Engineering, Hunan Institute of Science and Technology, Yue yang, 414006, China

^b Institute of New Energy, Hunan Institute of Science and Technology, Yue yang,
414006, China

* Corresponding author: xzhkong@hotmail.com, ouchangjie06@163.com

Scherrer equation

The average particle size of the grains was calculated according to the Equation S1.

$$D = \frac{k\lambda}{\beta\cos\theta}$$
(1)

In equation S1, k is the scherrer constant (0.9), λ is the X-ray wavelength (0.15406 nm), β is the half width of the diffraction peak, θ is the diffraction angle.

Figure S1. SEM image of the Mo₂C/NCNTs.

Figure S2. SEM image of the NCNTs@Ni.

Figure S3. SEM image of the NCNTs.

Figure S4. HAADF-STEM image of the Mo₂C/NCNTs@Ni.

Figure S5. XPS full scan of the Mo₂C/NCNTs@Ni.

sample	$\mathrm{R}_{\mathrm{ct}}\left(\Omega ight)$
Mo ₂ C/NCNTs@Ni	5.31
Mo ₂ C/NCNTs	8.20
NCNTs@Ni	6.98

Table S1. Calculated R_{ct} values of the samples based on equivalent circuit models.

Figure S6. Cyclic voltammograms at different scan rates. (a) Mo₂C/NCNTs@Ni. (b) Mo₂C/NCNTs. (c) NCNTs@Ni. (d) NCNTs.

sample	$R_{ct}(\Omega)$	
Mo ₂ C/NCNTs@Ni	4.73	-
Mo ₂ C/NCNTs	6.49	
NCNTs@Ni	6.43	

Table S2. Calculated R_{ct} values of the samples based on equivalent circuit models.

Figure S7. XRD patterns of the Mo₂C/NCNTs@Ni after the HER durability test.

Figure S8. SEM image of the Mo₂C/NCNTs@Ni after the HER durability test.

Figure S9. SEM image of the Mo₂C/NCNTs@Ni after the HER durability test.

Figure S10. CVs for Mo₂C/NCNTs@Ni in the faradic capacitance current range at scan rates from 20 to 120 mV s⁻¹.

Figure S11. The corresponding plot of oxidation peak current versus the scan rate from CV test.

Figure S12. XRD patterns of the Mo₂C/NCNTs@Ni after the OER durability test.

Figure S13. SEM image of the Mo₂C/NCNTs@Ni after the OER durability test.

Figure S14. SEM image of the Mo₂C/NCNTs@Ni after the OER durability test.

Table S3. Activity comparison of AEM water electrolysis.							
Catalyst	Temperature	Activity	Ref.				
Mo ₂ C/NCNTs@Ni Mo ₂ C/NCNTs@Ni	room temperature	82.5 mA cm ⁻² at 1.99 V	This work				
Co-Mo ₂ C@NC Co- Mo ₂ C@NC	room temperature	10 mA cm ⁻² at 1.83 V	1				
Nickel nanopowders $\ Li_{0.21}Co_{2.79}O_4\ $	45°C	300 mA cm ⁻² at 2.05 V	2				
Ni/CP Ni/CP	50°C	150 mA cm ⁻² at 1.9 V	3				
Co ₃ O ₄ eCuO Ni	40°C	92.11 mA cm ⁻² at 2 V	4				
CuCoO _x Ni/(CeO ₂ - La ₂ O ₃)/C	60°C	74 mA cm ⁻² at 2 V	5				
$Cu_{0.7}Co_{2.3}O_4 Pt$	25 °C	73.33 mA cm ⁻² at 2 V	6				
$\begin{array}{c} CuxMg_{0.9-} \\ _{x}Co_{2.1}O_{4} \ Pt \end{array}$	40°C	66.67 mA cm ⁻² at 2 V	7				
SG-LSFN-0.5 Pt/C	room temperature	100 mA cm ⁻² at 1.89 V	8				

Fable S3. Activity	comparison	of AEM	water	electrolys	sis.
--------------------	------------	--------	-------	------------	------

References:

- M. Wang, S. Dipazir, P. Lu, Y. Wang, M. Yuan, S. Li and G. Zhang, J. Colloid Interf. Sci., 2018, 532, 774-781.
- 2. X. Wu and K. Scott, Int. J. Hydrogen Energy, 2013, 38, 3123-3129.
- S. H. Ahn, B.-S. Lee, I. Choi, S. J. Yoo, H.-J. Kim, E. Cho, D. Henkensmeier, S. W. Nam, S.-K. Kim and J. H. Jang, *Appl. Catal. B-Environ.*, 2014, 154-155, 197-205.
- E. López-Fernández, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, F. Yubero and A. de Lucas-Consuegra, *J. Power Sources*, 2019, 415, 136-144.
- 5. L. Zeng and T. S. Zhao, J. Power Sources, 2016, **303**, 354-362.
- 6. X. Wu and K. Scott, J. Mater. Chem., 2011, 21(33), 12344-12351.
- A. El-Trass, H. ElShamy, I. El-Mehasseb and M. El-Kemary, *Appl. Surf. Sci.*, 2012, 258, 2997-3001.
- L. Li, Z. Zheng, J. Li, Y. Mu, Y. Wang, Z. Huang, Y. Xiao, H. Huang, S. Wang,
 G. Chen and L. Zeng, *Small*, 2023, 19, e2301261.