Supporting Information

Controllable synthesis of electric double layer capacitance and

pseudocapacitance coupled porous carbon cathode material for zinc-

ion hybrid capacitors

Xiaoyi Pan^{a#}, Qian Li^{a#}, Tongde Wang^b, Tie Shu^c Yousheng Tao^{a*}

^a College of Materials Science and Engineering, Sichuan University, Chengdu,

610065, People's Republic of China

^b Shanghai Key Laboratory of Special Artificial Microstructure Materials and

Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

^c Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China

*Corresponding author. E-mails: taoys@scu.edu.cn (Yousheng Tao)

Xiaoyi Pan and Qian Li contributed equally to this manuscript.

Figure S1 TEM image of (a,b) Pure, (c,d) SA-2, (e,f) SA-4.

Figure S2 XRD before cleaning

Figure S3 pore size distributions of Pure, SA-2, SA-3 and SA-4

Figure S4 XPS high-resolution spectra of C 1s and O 1s for (a, b) Pure, (c, d) SA-2, (e,

f) SA-4.

Figure S5 CV curves and GCD plots of (a, b) Pure, (c, d) SA-2, (e, f) SA-4.

Figure S6 EIS plots of different samples.

Figure S7 circling performance for ZIHCs based on (a) Pure, (b) SA-2, (c) SA-4 at 5A

Figure S8 the capacitive contribution at different scan rates of SA-3.

Figure S9 SEM of SA-3 (a) and (b) 0.2V, (c) charge to 1 V, (d) charge to 1.8 V

Figure S10 (a) the ex situ XRD pattern for corresponding potential of Zn anode, (b) enlarged view for b) ranging from 5° to 30°. SEM image for (c) pure Zn, (d) 1.8 V, (e) discharging to 1 V, (f) discharging to 0.2 V, (g) charging to 1 V, (h) charging to 1.8 V of Zn anode.

Figure S11 (a) XPS spectrum, XPS spectrum for (b) Zn 2p and (c) S 2p

Sample	$S_{BET}/m^2 g^{-1}$	$S_{micro}/m^2 g^{-1}$	V _{total} /cm ³ g ⁻¹	V _{micro} /cm ³ g ⁻¹
Pure	883	329	0.28	0.16
SA-2	1216	475	0.45	0.21
SA-3	1321	456	0.46	0.21
SA-4	1266	237	0.45	0.13

Table S1 Structural parameters of Pure and SA-x samples

Table S2 C, O ratio of SA-x samples

	C (%)			O (%)				
	C=C	C-C	C-O	С=О	O=C-O	С=О	C-0	O=C-O
Pure	55.98	20.08	15.64	4.67	3.63	8.09	88.41	3.50
SA-2	57.03	24.92	8.50	3.24	6.33	25.68	60.83	13.49
SA-3	51.63	28.96	9.54	2.31	7.56	19.24	73.25	7.51
SA-4	43.22	37.71	11.92	1.76	5.38	14.58	77.11	8.31

7000	F D L Y	Potential			
ZIHCs	Energy/Power density	window	Cycle stability		
Zn// 1 M ZnSO ₄ //	92 W h kg ⁻¹ / 99.5 W kg ⁻¹	0.1-1.45			
ASICKOH ¹	43 W h kg ⁻¹ /1.03 kW kg ⁻¹	V			
7	61.6 W h kg ⁻¹ /72 W kg ⁻¹		20,000 cycles/ 91%/ 1 A		
$2n//1 M 2n(CF_3SO_3)_2//$	52.7 W h kg ⁻¹ /1.73 kW	0-1.8 V			
AC ²	kg ⁻¹		g ⁻¹		
	91 W h kg ⁻¹ /94 W kg ⁻¹				
Zn// I M ZnSO ₄ // L-NS-	33.8 W h kg ⁻¹ /9.9 kW kg ⁻	0.2-1.8 V	18000 cycles/ 94.2%/ 2		
CNS ³	1		A g ⁻¹		
	142.2 W h kg ⁻¹ /400.3 W				
Zn// 1 M ZnSO ₄ //	kg^{-1}	0.1.1.7.1	10000 cycle/ 90%/ 10 A g ⁻¹		
PCNF-4 ⁴	68.4 W h kg ⁻¹ /15.39 kW	0.1-1.7 V			
	kg^{-1}				
	129.3 W h kg ⁻¹ /266.4 W				
$Zn// 2 M ZnSO_4//$	kg ⁻¹		10000 cycle/ 96%/ 1 A g ⁻¹		
MCHSs ⁵	36.8 W h kg ⁻¹ /13.7 kW	0.2-1.8 V			
	kg-1				
	117.5 W h kg ⁻¹ /890 W				
-7-1/2 M 7-50 // DIL 46	kg ⁻¹	<u>01103</u> 7			

Table S3 Performance comparison of our ZIHC with reported ZIHCs.

60.7 W h kg⁻¹/16.2 kW

kg-1

	100 W h kg ⁻¹ /100 W kg ⁻¹		50000 cycle/ 93%/ 5 A
This work	50 XV h h1/0 0 hXV h1	0.2-1.8 V	1
	58 W n kg ⁻¹ /9.9 kW kg ⁻¹		g

Naik, P. B.; Yadav, P.; Nagaraj, R.; Puttaswamy, R.; Beere, H. K.; Maiti,
U. N.; Mondal, C.; Kotrappanavar, N. S.; Ghosh, D., Developing High-Performance
Flexible Zinc Ion Capacitors from Agricultural Waste-Derived Carbon Sheets. *Acs Sustainable Chemistry & Engineering* 2022, *10* (4), 1471 1481.http://dx.doi.org/10.1021/acssuschemeng.1c06569

 Wang, H.; Wang, M.; Tang, Y., A novel zinc-ion hybrid supercapacitor for longlife and low-cost energy storage applications. *Energy Storage Materials* 2018, *13*, 1-7.<u>http://dx.doi.org/10.1016/j.ensm.2017.12.022</u>

Jian, W.; Zhang, W.; Wei, X.; Wu, B.; Liang, W.; Wu, Y.; Yin, J.; Lu,
K.; Chen, Y.; Alshareef, H. N.; Qiu, X., Engineering Pore Nanostructure of Carbon
Cathodes for Zinc Ion Hybrid Supercapacitors. *Advanced Functional Materials* 2022,
32 (49).<u>http://dx.doi.org/10.1002/adfm.202209914</u>

4. Pan, Z.; Lu, Z.; Xu, L.; Wang, D., A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. *Applied Surface Science* **2020**, *510*.<u>http://dx.doi.org/10.1016/j.apsusc.2020.145384</u>

5. Liu, P.; Liu, W.; Huang, Y.; Li, P.; Yan, J.; Liu, K., Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage.

865.<u>http://dx.doi.org/10.1016/j.ensm.2019.09.004</u>

6. Fan, H.; Zhou, S.; Li, Q.; Gao, G.; Wang, Y.; He, F.; Hu, G.; Hu, X., Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Zn-ion hybrid supercapacitors. *Journal of Colloid and Interface Science* **2021**, *600*, 681-690.<u>http://dx.doi.org/10.1016/j.jcis.2021.05.042</u>