Movable type printing method to fabricate ternary FeCoNi alloy confined in porous carbon towards oxygen electrocatalysts for rechargeable Zn-air battery

Xuzi Cong^{a,1}, Jigang Wang^{a,1}, Yinggang Sun^a, Gaojin Feng^a, Qiang Liu^a, Likai Wang^{a,b,*}

^a School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, P. R. China

^b School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea.

* Corresponding authors.

E-mail addresses: <u>lkwangchem@sdut.edu.cn</u>

¹ These authors contributed equally to this work.

Electrochemical Characterizations

The electrochemical measurements were conducted using CHI 760E electrochemical workstation equipped with a standard three-electrode glass cell. The three-electrode consisted of a reference electrode (Ag/AgCl), a counter electrode (graphite rod) and a rotating disk electrode (RDE). For preparation of the working electrode, 2.5 mg of catalyst and 10 μ L of Nafion (5 wt%) were dispersed in 1 mL ethanol under sonication for 30 mins to obtain a uniform catalyst ink. Subsequently, 32 μ L of the catalyst ink was carefully applied onto the surface of was dripped on the surface of RDE with the loading mass of 400 μ g cm⁻², while the loading mass of commercial Pt/C was about 200 μ g cm⁻².

The Koutecky-Levich (K-L) plot was calculated to obtain the number of electrons transferred (n) of oxygen reduction reaction and analyze reaction kinetic, could be expressed as follows:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_k} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
$$B = 0.62nFC_0 D_0^{2/3} v^{-1/6}$$
$$J_K = nFKC_0$$

where J, J_K and J_L are the measured current density, kinetic and diffusion limiting current densities, respectively; ω is the linear rotation speed (rpm min⁻¹) of the disk, F is the Faradaic constant (96485 C mol⁻¹), C₀ is the oxygen concentration (solubility) in 0.1 M KOH (1.2×10⁻⁶ mol cm⁻¹); D₀ is the oxygen diffusion coefficient in 0.1 M KOH (1.9×10⁻⁵ cm² s⁻¹), υ is the kinematic viscosity of the 0.1 M KOH (1.13×10⁻⁵ cm² s⁻¹), and K is the constant of electron transfer rate.

RRDE tests were conducted on the CHI 760E electrochemical analyzer at a rotation speed of 1600 rpm with a potential sweep of 10 mV s⁻¹; the Pt ring potential was set at 1.5 V vs. RHE. The electron transfer number (n) and the yield of hydrogen peroxide were obtained based on the following equation:

$$n = 4 \frac{I_d}{I_d + I_r/N}$$
$$H_2 O_2 \% = 200 \frac{I_r/N}{I_d + I_r/N}$$

where I_d and Ir are the disk current and ring current, respectively, and N is the collection efficiency of the Pt ring (N = 0.37, as provided by the manufacturer).

Liquid ZABs

Liquid ZABs were prepared and tested at room temperature. Briefly, a polished zinc foil and 6.0 M KOH filled with 0.2 M Zn(acac)₂ were used as anode and electrolyte, respectively. The air cathode was assembled with the carbon cloth loaded with FeCoNi-NC catalysts or the mixture of commercial Pt/C+RuO₂ (Pt/C:RuO₂ =1:1), where the mass loading of catalyst was about 1 mg cm⁻². Nickel foam was used as current collector.

Solid ZABs

2 g of PVA was dissolved in 24 ml of water, the mixture was heated to 95°C and continuously stirred until it turned into a clear glue-like substance. Then 18 M KOH and 0.6 M Zn(acac)₂ aqueous solution was added to obtain a homogeneous solid-state gel electrolyte, and this electrolyte was storaged under -18 °C for overnight. Flexible ZABs electrode consists of solid electrolyte, a carbon cloth coated by catalyst as air cathode, and a polished zinc foil as the anode.

Figure S1 SEM images of (A) NC, (B) Fe-NC, (C) Co-NC and (D) Ni-NC

Figure S2 the elemental components of FeCoNi-NC.

Figure S3 XRD pattern of various samples.

Figure S4 (A) N₂ adsorption-desorption isotherms, and (B) the corresponding pore size distributions of NC, Fe-NC and FeCoNi-NC.

Figure S5 Raman spectrum of FeCo-NC.

Figure S6 XPS suvery spectra of various samples.

Figure S7 (A-E) C 1s, (F-I) N 1s of various samples.

Figure S8 CV curves of FeCoNi-NC and Pt/C in O₂-saturated and N₂-saturated 0.1 M KOH.

Figure S9 ORR LSV curves of various samples at 1600 rpm in

O₂-saturated 0.1 M KOH.

Figure S10 LSV curves of FeCoNi-NC before and after acid etching.

Figure S11 LSV curves with the sweep rate from to 400 to 2025 rpm and the corresponding K-L plots of various samples.

Figure S12 Nyquist plots of various samples in 0.1 M KOH.

Figure S13 OER LSV curves in 1 M KOH of various samples.

Figure S14 ORR half wave overpotential ($E_{1/2}$) and OER overpotential at 10 mA cm⁻².

Figure S15 Discharge-charge cycling measurement of FeCoNi-NC-based f-ZABs under bending state (the inset show the images of FeCoNi-NC-based f-ZABs with different bending angles).

Figure S16 The image of red LEDs powered by FeCoNi-NC-based f-ZABs.

Sample	FeCl ₃ ·6H ₂ O	Co(CH ₃ COO) ₂	Ni(CH ₃ COO) ₂	
NC	0 mg	0 mg	0 mg	
Fe-NC	50 mg	0 mg	0 mg	
Co-NC	0 mg	25 mg	0 mg	
Ni-NC	0 mg	0 mg	50 mg	
FeCo-NC	50 mg	50 mg	0 mg	
FeNi-NC	50 mg	0 mg	50 mg	
CoNi-NC	0 mg	50 mg	50 mg	
FeCoNi-NC	50 mg	25 mg	25 mg	

 Table S1 Experimental details for as-prepared samples.

Sample	C (at%)	N (at%)	Fe (at%)	Co(at%)	Ni (at%)
FeCoNi-NC	89.94	6.38	1.17	1.31	1.20
Fe-NC	90.17	8.43	1.41	_	—
Co-NC	90.67	7.00	—	2.33	—
Ni-NC	89.77	8.53	—	—	1.70
NC	91.75	8.25	_	_	—

 Table S2 The elemental components of as-prepared samples.

Sample	ORR E _{1/2} (V)	OER overpotential (V) @ 10 mA cm ⁻²	Reference
FeCoNi-NC	0.838	1.560	This work
FeNi/N-C-800	0.845	1.600	Appl. Catal. B 2023, 321, 122067.
YHP-1	0.79	1.487	Rare Metals 2023. doi.org/10.1007/s12598- 023-02485-9.
Fe _{0.25} Co _{0.75} /NC-800	0.860		Adv. Sci. 2022, 9, 2200394.
NiFe/N-CNT	0.75	1.520	Nano Energy, 2020, 68, 104293.
G-Co _{0.6} Fe _{0.4}	0.83		Adv. Energy Mater., 2020, 10, 1903215.
FeCo/Co ₂ P@NPCF	0.79		Adv. Energy Mater., 2020, 10, 1903854.
CoFe/N-GCT	0.79	1.670	Angew. Chem. Int. Ed., 2018, 57, 16166- 16170.
CoNiFe-S MNs	0.78	1.490	Adv. Energy Mater., 2018, 8, 1801839.

Table S3 Comparison of ORR and OER activity for FeCoNi-NC with other reported transition metal catalysts.