Supporting Information

Galvanic Replacement-Induced the preparation of bloom-like Pt₂₃Ni₇₇ for

methanol coupled efficient hydrogen production

Jin Zhao, Jinjin Wang, Ying Wang, Junming Zhang, Ergui Luo, Baoliang Lv, Tianjun

Hu^{*}, Jianfeng Jia^{*}

Key Laboratory of Magnetic Molecules and Magnetic Information Materials of

Ministry of Education & School of Chemistry and Materials Science of Shanxi

Normal University, Taiyuan 030032, China

^{*}Corresponding authors.

E-mail: hutj@ sxnu.edu.cn (T.-J Hu), jiajf@dns.sxnu.edu.cn (J.-F Jia)

Fig. S1 The SEM images. a, b) Ni NPs.

Fig. S2 The SEM images. a, b) Pt₁₂Ni₈₈.

Fig. S3 The SEM images. a, b) Pt₂₃Ni₇₇.

Fig. S4 The SEM images. a, b) Pt₄₂Ni₅₈.

Fig. S5 (a-c) Low-magnification TEM images for Ni.

Fig. S6 (a-c) Low-magnification TEM images for $Pt_{12}Ni_{88}$.

Fig. S7 (a-c) Low-magnification TEM images for $Pt_{23}Ni_{77}$.

Fig. S8 (a-c) Low-magnification TEM images for Pt₄₂Ni₅₈.

Fig. S9 N₂ adsorption/desorption isotherms and pore size distribution of the (a) Ni, (b) Pt₁₂Ni₈₈, (c) Pt₂₃Ni₇₇, and (d) Pt₄₂Ni₅₈.

Fig. S10 The CV curves obtained at different scan rates (20-120 mV s⁻¹) a) Pt/C, b) $Pt_{12}Ni_{88}$, c) $Pt_{23}Ni_{77}$, and d) $Pt_{42}Ni_{58}$ in 0.5 M H₂SO₄.

Fig. S11 The CV curves obtained at different scan rates (20-120 mV s⁻¹) a) Pt/C, b) $Pt_{12}Ni_{88}$, c) $Pt_{23}Ni_{77}$, and d) $Pt_{42}Ni_{58}$ in 1.0 M KOH.

Fig. S12 Amount of H_2 and FEs during recycling tests for 5 cycles with an overpotential of 100 mV and 10 min in (a) 0.5 M H_2SO_4 and (b) 1.0 M KOH. (c) Diagram of the device for collecting hydrogen and oxygen using the drainage gas collection method.

Fig. S13 (a) Comparison of potential-dependent TOF at -0.05 V vs. RHE in 0.5M H_2SO_4 . (b) Comparison of potential-dependent TOF at -0.07 V vs. RHE in 1.0 M KOH.

Fig. S14 CO stripping that quantifies the surface area of catalysts at 50 mV s⁻¹ in N_2 -saturated 0.5 M H₂SO₄.

Catalyst	Pt loading (wt. %)	Ni loading (wt. %)	Molar ratio of Pt : Ni
Pt ₁₂ Ni ₈₈	12	88	0.03941
Pt ₂₃ Ni ₇₇	23	77	0.09184
Pt ₄₂ Ni ₅₈	42	58	0.22180

 Table S1. ICP-MS analysis of catalysts.

Sample	Ni	Pt ₁₂ Ni ₈₈	Pt ₂₃ Ni ₇₇	Pt42Ni58
S_{BET} ^a	17.6104	21.4322	27.8802	26.4335
D _{pore} ^b	16.6038	18.9621	5.4376	8.4741
V _{pore} ^c	0.0731	0.1016	0.0379	0.0560

Table S2. Porosity Parameters of the Ni, Pt₁₂Ni₈₈, Pt₂₃Ni₇₇, and Pt₄₂Ni₅₈ catalysts.

^a BET surface areas (m²/g). ^b Average pore size (nm). ^c Single-point adsorption total pore volume of pores (cm³/g).

Table S3. Summary of the HER Properties of $Pt_{23}Ni_{77}$ and other representative catalysts in literature at 1.0 M KOH.

Catalysts	Overpotential (mV vs. RHE) at 10 mA cm ⁻²	Ref.
Pt ₂₃ Ni ₇₇	32	This work
Pt ₁ /N-C	46	1
Pt/NiRu-OH	38	2
Pt-Ni NWs/NiO _x	40	3
Pt ₃ Ni ₂ -NWs-S	42	4
A-CoPt-NC	50	5
Pt-Ni-O	40	6
RhPd-H	40	7
Pt/MOF-O	66	8
Pt/np-Co _{0.85} Se	58	9
Pt-Co(OH) ₂ /C	32	10
RuTeP	35	11
Ru ₁ Ni ₁ -NCNFs	35	12
Pd ₃ Ru/C	42	13
Pt _{3.6} Ni-S NWs	38	14
Pt/MgO	39	15

Catalysts	Overpotential (mV vs. RHE) at 10 mA cm ⁻²	Ref.
Pt ₂₃ Ni ₇₇	21.2	This work
Pt1Ru1/NMHCS-A	22	16
Pt-SAs/WS ₂	32	17
1% PtW ₆ O ₂₄ /C	22	18
Pt ₁ /OLC	38	19
PtN _x /TiO ₂	67	20
Pt/MOF-O	28	8
PtTe ₂ NSs	~40	21
PtRu/RFCS	46.6	22
Pt/C-40%	45	23
Pt ₃ Ni ₄ NWs/C	40	4
Pt@NHPCP	56	24
Pt@MTO-S	73	25
ALD50 Pt/NGNs	39	26
PtSi	22	27

Table S4. Summary of the HER Properties of $Pt_{23}Ni_{77}$ and other representative catalysts in literature at 0.5 M H₂SO₄.

Catalysts	Electrolytes	Onset potential (V vs. RHE)	Mass activity (mA mg ⁻¹)	Ref.
Pt ₂₃ Ni ₇₇	$\begin{array}{c} 0.5 \text{ M } H_2 SO_4 + 0.5 \text{ M} \\ \text{Methanol} \end{array}$	0.60	2470	This work
CeO _x /PtCu/CeCuO _x /C	$0.5 \text{ M} \text{ H}_2 \text{SO}_4 + 0.5 \text{ M}$ Methanol	0.52	889	28
Ce-modified Pt NPs/C	0.5 M H ₂ SO ₄ + 1.0 M Methanol	0.55	1470	29
CuWPt-1	0.1 M HClO ₄ + 1.0 M Methanol	0.60	2110	30
GDY@PtCu	0.5 M H ₂ SO ₄ + 1.0 M Methanol	0.64	700	31
Ru-ca-PtNi	0.1 M HClO ₄ + 0.5 M Methanol	0.60	2010	32
Pt ₃ Co–CoP ₂	0.1 M HClO ₄ + 1.0 M Methanol	0.59	1400	33
Pt/CeO ₂ -P	0.5 M H ₂ SO ₄ + 1.0 M Methanol	0.60	714	34
PtCo @NC	0.1 M HClO ₄ + 1.0 M Methanol	0.45	2300	35
PtTe PNCs	0.5 M H ₂ SO ₄ + 1.0 M Methanol	0.54	1020	36

Table S5. Comparison of the MOR activity of different Pt electrocatalysts in acid solution.

References

- S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu, D. Wang, W. Zhang, Y. Lin, J. Lu, S. Wei, Y. Li and T. Yao, *Nat Commun*, 2020, **11**, 1029.
- [2] D. Li, X. Chen, Y. Lv, G. Zhang, Y. Huang, W. Liu, Y. Li, R. Chen, C. Nuckolls and H. Ni, *Appl. Catal. B*, 2020, 269, 118824.
- [3] P. Wang, K. Jiang, G. Wang, J. Yao and X. Huang, *Angew. Chem. Int. Ed*, 2016, 55, 12859-12863.
- [4] P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao and X. Huang, *Nat Commun*, 2017, 8, 14580.
- [5] L. Zhang, Y. Jia, H. Liu, L. Zhuang, X. Yan, C. Lang, X. Wang, D. Yang, K. Huang, S. Feng and X. Yao, *Angew. Chem. Int. Ed*, 2019, 58, 9404-9408.
- [6] Z. Zhao, H. Liu, W. Gao, W. Xue, Z. Liu, J. Huang, X. Pan and Y. Huang, J Am Chem Soc, 2018, 140, 9046-9050.
- J. Fan, J. Wu, X. Cui, L. Gu, Q. Zhang, F. Meng, B. H. Lei, D. J. Singh and W.
 Zheng, *J Am Chem Soc*, 2020, **142**, 3645-3651.
- [8] M. Wang, Y. Xu, C.-K. Peng, S.-Y. Chen, Y.-G. Lin, Z. Hu, L. Sun, S. Ding,
 C.-W. Pao, Q. Shao and X. Huang, J. Am. Chem. Soc, 2021, 143, 16512-16518.
- [9] K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y. R. Lu, T. S. Chan, F. M. F. de Groot and Y. Tan, *Nat Commun*, 2019, 10, 1743.
- [10] Z. Xing, C. Han, D. Wang, Q. Li and X. Yang, ACS Catalysis, 2017, 7, 7131-7135.
- [11] M. Liu, Y. Xu, S. Liu, S. Yin, M. Liu, Z. Wang, X. Li, L. Wang and H. Wang, J. Mater. Chem. A, 2021, 9, 5026-5032.
- [12] M. Li, H. Wang, W. Zhu, W. Li, C. Wang and X. Lu, *Adv Sci (Weinh)*, 2020, 7, 1901833.
- [13] X. Qin, L. Zhang, G.-L. Xu, S. Zhu, Q. Wang, M. Gu, X. Zhang, C. Sun, P. B. Balbuena, K. Amine and M. Shao, *ACS Catalysis*, 2019, 9, 9614-9621.
- [14] Z. Liu, J. Qi, M. Liu, S. Zhang, Q. Fan, H. Liu, K. Liu, H. Zheng, Y. Yin and C. Gao, *Angew. Chem. Int. Ed*, 2018, 57, 11678-11682.

- [15] H. Tan, B. Tang, Y. Lu, Q. Ji, L. Lv, H. Duan, N. Li, Y. Wang, S. Feng, Z. Li, C.
 Wang, F. Hu, Z. Sun and W. Yan, *Nat Commun*, 2022, 13, 2024.
- [16] W. Zhao, C. Luo, Y. Lin, G.-B. Wang, H. M. Chen, P. Kuang and J. Yu, ACS Catalysis, 2022, 12, 5540-5548.
- [17] Y. Shi, Z. R. Ma, Y. Y. Xiao, Y. C. Yin, W. M. Huang, Z. C. Huang, Y. Z. Zheng, F. Y. Mu, R. Huang, G. Y. Shi, Y. Y. Sun, X. H. Xia and W. Chen, *Nat Commun*, 2021, **12**, 3021.
- [18] F. Y. Yu, Z. L. Lang, L. Y. Yin, K. Feng, Y. J. Xia, H. Q. Tan, H. T. Zhu, J. Zhong, Z. H. Kang and Y. G. Li, *Nat Commun*, 2020, **11**, 490.
- [19] D. Liu, X. Li, S. Chen, H. Yan, C. Wang, C. Wu, Y. A. Haleem, S. Duan, J. Lu,
 B. Ge, P. M. Ajayan, Y. Luo, J. Jiang and L. Song, *Nature Energy*, 2019, 4, 512-518.
- [20] X. Cheng, Y. Lu, L. Zheng, Y. Cui, M. Niibe, T. Tokushima, H. Li, Y. Zhang, G. Chen, S. Sun and J. Zhang, *Nano Energy*, 2020, **73**, 104739.
- [21] X. Li, Y. Fang, J. Wang, H. Fang, S. Xi, X. Zhao, D. Xu, H. Xu, W. Yu, X. Hai, C. Chen, C. Yao, H. B. Tao, A. G. R. Howe, S. J. Pennycook, B. Liu, J. Lu and C. Su, *Nat Commun*, 2021, **12**, 2351.
- [22] K. Li, Y. Li, Y. Wang, J. Ge, C. Liu and W. Xing, *Energy Environ. Sci*, 2018, 11, 1232-1239.
- [23] L. Zhu, H. Lin, Y. Li, F. Liao, Y. Lifshitz, M. Sheng, S. T. Lee and M. Shao, *Nat Commun*, 2016, 7, 12272.
- [24] J. Ying, G. Jiang, Z. Paul Cano, L. Han, X.-Y. Yang and Z. Chen, *Nano Energy*, 2017, 40, 88-94.
- [25] P. Bhanja, B. Mohanty, A. K. Patra, S. Ghosh, B. K. Jena and A. Bhaumik, *ChemCatChem*, 2018, **11**, 583-592.
- [26] N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton and X. Sun, *Nat Commun*, 2016, 7, 13638.
- [27] Z. Pu, T. Liu, G. Zhang, Z. Chen, D. S. Li, N. Chen, W. Chen, Z. Chen and S. Sun, Adv. Energy Mater, 2022, 12, 2200293.
- [28] Y. Wang, Z. Li, X. Zheng, R. Wu, J. Song, Y. Chen, X. Cao, Y. Wang and Y.

Nie, Appl. Catal. B, 2023, 325, 122383.

- [29] L. Chen, X. Liang, X. Li, J. Pei, H. Lin, D. Jia, W. Chen, D. Wang and Y. Li, *Nano Energy*, 2020, 73, 104784.
- [30] D. Liu, Q. Zeng, C. Hu, D. Chen, H. Liu, Y. Han, L. Xu, Q. Zhang and J. Yang, *Nano Research Energy*, 2022, 1.
- [31] H. Pan, Z. Jiang, Z. Zuo, F. He, F. Wang, L. Li, Q. Chang, B. Guan and Y. Li, *Nano Today*, 2021, **39**, 101213.
- [32] F. Kong, X. Liu, Y. Song, Z. Qian, J. Li, L. Zhang, G. Yin, J. Wang, D. Su and X. Sun, Angew. Chem. Int. Ed, 2022, 61, 202207524.
- [33] N. Yang, D. Chen, P. Cui, T. Lu, H. Liu, C. Hu, L. Xu and J. Yang, *SmartMat*, 2021, 2, 234-245.
- [34] L. Tao, Y. Shi, Y.-C. Huang, R. Chen, Y. Zhang, J. Huo, Y. Zou, G. Yu, J. Luo,C.-L. Dong and S. Wang, *Nano Energy*, 2018, 53, 604-612.
- [35] G. Hu, L. Shang, T. Sheng, Y. Chen and L. Wang, *Adv. Funct. Mater*, 2020, 30, 2002281.
- [36] Q. Zhang, T. Xia, H. Huang, J. Liu, M. Zhu, H. Yu, W. Xu, Y. Huo, C. He, S. Shen, C. Lu, R. Wang and S. Wang, *Nano Research Energy*, 2023, 2, 9120041.