Supplementary Information

Insight into the Intrinsic Activity of Transition Metal Sulfides for Hydrogen Evolution Reaction

Xinran Hu^{a,b}, Yang Gao^{b,c,*}, Xinying Luo^{b,c}, Junjie Xiong^{b,c}, Ping Chen^{a,*}, Bin

Wang^{b,c,*}

^a School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui

230601, China

^b CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center

for Nanoscience and Technology, Beijing 100190, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding authors.

E-mail addresses: gaoyang@nanoctr.cn (Y. Gao), chenping@ahu.edu.cn (P. Cheng),

wangb@nanoctr.cn (B. Wang)

Calculation of TOF. The TOF is defined as follows:

$$TOF = \frac{JA}{2Fn} \tag{S1}$$

Where J is the current density (A cm⁻²) at a certain overpotential, A is the surface area (cm^2) of the electrode, 2 is the mole of electrons transferred to generate one mole of H₂, F is the Faraday constant (96485 C mol⁻¹), and n is the number of moles of active sites. TOFs were calculated based on the assumption that all transition metal atoms in the samples are catalytically active.^{1,2}

Calculation of ECSA. ECSA is calculated from the C_{dl} according to the equation:

$$ECSA = \frac{C_{dl}}{C_s}$$
(S2)

where C_s is the specific capacitance of the sample or the capacitance of an atomically smooth planar surface of the material per unit area under identical electrolyte conditions. While ideally, one would synthesize smooth, planar surfaces of each catalyst to measure C_s and estimate ECSA, this is not practical for most electrodeposited systems. However, specific capacitances have been measured for a variety of metal electrodes in acidic and alkaline solutions and typical values reported range between C_s = 0.015-0.110 mF cm⁻² in H₂SO₄ and C_s = 0.022-0.130 mF cm⁻² in NaOH and KOH solutions.^{3,4} For our estimates of surface area, we use general specific capacitances of C_s = 0.035 mF cm⁻² in 0.5 M H₂SO₄ and C_s = 0.040 mF cm⁻² in 1 M NaOH based on typical reported values.⁵ **Calculation of** j_{0} **.** A small current density (j=5 mA cm⁻²) is taken in the micropolarization region, and the corresponding voltage is equal to the measured voltage (η V vs. RHE). The j_0 is calculated according to the equation:

$$j = j_o \frac{\eta F}{RT} \tag{S3}$$

Where η is the overpotential (mV), F is the Faradaic constant, R is the ideal gas constant (8.314 J mol⁻¹K⁻¹), and T is the experimental temperature (298 K).⁶

Fig. S1 CV curves of (a) MoS_2 , (b) WS_2 , (c) VS_2 , (d) FeS_2 , (e) CoS_x , and (f) NiS at

different scan rates of 10, 20, 40, 60, 80, and 100 mV s⁻¹ in 0.5 M H_2SO_4 .

Fig. S2 CV curves of (a) MoS_2 , (b) WS_2 , (c) VS_2 , (d) FeS_2 , (e) CoS_x , and (f) NiS at different scan rates of 10, 20, 40, 60, 80, and 100 mV s⁻¹ in 1 M KOH.

Fig. S3 ECSA (left) and C_{dl} (right) values of MoS₂, WS₂, VS₂, FeS₂, CoS_x, and NiS in (a) 0.5 M H₂SO₄ and (b) 1 M KOH.

Fig. S4 ECSA-normalized HER polarization curves of MoS_2 , WS_2 , VS_2 , FeS_2 , CoS_x and NiS in (a) 0.5 M H₂SO₄ and (b) 1 M KOH.

Fig. S5 EIS curves of (a) MoS_2 , (b) WS_2 , (c) VS_2 , (d) FeS_2 , (e) CoS_x , and (f) NiS in 0.5

M H₂SO₄.

Table S1 The parameter of R_s , R_p , and R_{ct} for MoS₂, WS₂, VS₂, FeS₂, CoS_x, and NiS

Sample	$R_{s}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{p}}\left(\Omega\right)$	$R_{ct}(\Omega)$
MoS ₂	6.63	9.90	21.24
WS_2	6.98	67.46	16.21
VS_2	7.48	66.76	15.34
FeS ₂	7.81	32.00	22.85
CoS _x	7.76	43.91	29.24
NiS	6.76	153.80	75.21

in 0.5 M H₂SO₄.

Fig. S6 EIS curves of (a) MoS_2 , (b) WS_2 , (c) VS_2 , (d) FeS_2 , (e) CoS_x , and (f) NiS in 1

M KOH.

Table S2 The parameter of R_s , R_p , and R_{ct} for MoS₂, WS₂, VS₂, FeS₂, CoS_x, and NiS

in 1 M KOH.

Sample	$\mathrm{R}_{\mathrm{s}}\left(\Omega ight)$	$\mathrm{R}_{\mathrm{p}}\left(\Omega ight)$	$R_{ct}(\Omega)$
MoS_2	8.565	/	19.74
WS_2	6.899	23.59	126.30
VS_2	6.914	567.50	12302
FeS_2	6.058	14.52	89.85
CoS _x	4.421	18.99	42.11
NiS	7.374	281.30	673.20

Fig. S7 TEM characterization of (a) FeS_2 , (b) CoS_x and (c) NiS after the reaction.

Catalyst	Electrolyte	Overpotential	Tafel slope	Ref.
		$\Pi_{10} (\mathrm{mV})$	$(mV dec^{-1})$	
MoS_2	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	390	124	This work
Strained vacancy MoS ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	170	60	7
$1T'-MoS_2$	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	175	100	8
MoS ₂ /CNS	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	200	53	9
MoS ₂ Particles	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	160	82	10
double-gyroid MoS ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	200	50	11
2H Planar MoS_2	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	364	108	12
Vertically aligned 2H	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	400	105	13
MoS_2				
MoS_2	1 M KOH	256	115	This work
2H MoS ₂ bulk	1 M KOH	600	131	14
2H MoS ₂ nanosheets	1 M KOH	500	108	14
$2D-MoS_2/Co(OH)_2$	1 M KOH	128	76	15
MoS_2	1 M KOH	300 (Ŋ ₅)	144	16
Co ₃ O ₄ /MoS ₂	1 M KOH	205	98	17
H-MoS ₂	1 M KOH	326	134	18
MoS ₂ /NC	1 M KOH	185	90	19

 Table S3 Performances of TMS-based electrocatalysts for HER.

 η_{10} : Overpotential at the current density of 10 mA cm^{-2}

References

- K. Huang, J. Xia, Y. Lu, B. Zhang, W. Shi, X. Cao, X. Zhang, L.M. Woods, C. Han,
 C. Chen, T. Wang, J. Wu and Y. Huang, *Adv. Sci.*, 2023, **10**, 2300094.
- 2 J. Wang, X. Yue, Y. Yang, S. Sirisomboonchai, P. Wang, X. Ma, A. Abudula and G. Guan, J. Alloy. Compd., 2020, 819, 153346.
- 3 Y. Lu, H. Xu, J. Wang and X. Kong, *Electrochim. Acta.*, 2009, 54, 3972-3978.
- 4 T.A. Centeno, and F. Stoeckli, J. Power Sources., 2006, 154, 314-320.
- 5 C.C. McCrory, S. Jung, J.C. Peters and T.F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977-16987.
- 6 F. Song, W. Li, J. Yang, G. Han, P. Liao and Y. Sun, Nat. Commun., 2018, 9, 4531.
- 7 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J.K. Nørskov and X. Zheng, *Nat. Mater.*, 2016, **15**, 48-53.
- 8 Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao,
 Z. Liu, F. Ran, X. Wang, H. Li, X. Huang, B. Li, Q. Xiong, Q. Zhang, Z. Liu, L. Gu,
 Y. Du, W. Huang, and Zhang, H. Nat. Chem., 2018, 10, 638-643.
- 9 W. Hu, G. Han, Y. Liu, B. Dong, Y. Chai, Y. Liu and C. Liu, *Int. J. Hydrog. Energy.*, 2015, **40**, 6552.
- 10 T. Wang, D. Guo, J. Zhou, Z. Zhu, P. Papakonstantinou, Y. li and M. li, *Chem. Eur. J.* 2013, **19**, 11939-11948.
- 11 J. Kibsgaard, Z. Chen, B.N. Reinecke and T.F. Jaramillo, *Nat. Mater.* 2012, 11, 963-969.
- 12 Y. Chen, A. Lu, P. Lu, X. Yang, C. Jiang, M. Mariano, B. Kaehr, O. Lin, A. Taylor,

I.D. Sharp, L.J. Li, S.S. Chou and V. Tung, Adv. Mater., 2017, 29, 1703863.

- 13 D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao and Y. Cui, *Nano Lett.*, 2013, **13**, 1341-1347.
- 14 S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, X. Bi and S. Yang, *Adv. Energy Mater.*, 2018, **8**, 1801345.
- 15 Z. Zhu, H. Yin, C.T. He, M. Al-Mamun, P. Liu, L. Jiang, Y. Zhao, Y. Wang, H.G. Yang, Z. Tang, D. Wang, X.M. Chen and H. Zhao, *Adv. Mater.*, 2018, **30**, 1801171.
- 16 S. Saleem, M. Salman, S. Alia, Y. Ling and M. Khan, Int. J. Hydrog. Energy., 2022,
 47, 7713-7723.
- 17 A. Muthurasua, V. Maruthapandianc and H.Y. Kim, *Appl. Catal. B.*, 2019, **248**, 202–210.
- 18 Q. Liu, Z. Xue, B. Jia, Q. Liu, K. Liu, Y. Lin, M. Liu, Y. Li and G. Li, *Small*, 2020, 16, 2002482.
- 19 X. Huang, H. Xu, D. Cao and D. Cheng, Nano Energy., 2020, 78, 105253.