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Supplementary Information

This supplementary information provides technical details of the
molecular dynamics simulations performed in this work and de-
termination of parameters employed in the theoretical model de-
scribed in the main text.

Molecular Dynamics The fully atomistic MD simulations are
performed with the open-source package LAMMPS1. The pair-
wise interatomic potential employed is the standard (12-6) LJ
potential U(r) = 4ei j[(σ/r)12−(σ/r)6], which considers hard-core
repulsion and non-retarded vdW attraction between the species
(i, j = l, p,w) modeling the liquid solvent, particle, and wall. To
improve computational efficiency while accurately representing
interatomic forces2,3 the LJ potential is used with a cutoff dis-
tance rc = 2.5σ for liquid-liquid and liquid-solid interactions and
rc = 4σ for particle-wall interactions. The MD simulations re-
ported in Figs. 3-4 in the main text employ three particle-liquid
interaction energies epl = 0.5, 0.75, & 1 kBT and wall-liquid in-
teraction energies ewl = 0.5, 0.75, & 1 kBT , particle-wall inter-
actions epw ≃ 0.5-2 kBT , and the self-interaction energies are
eii = kBT for all cases. The Hamaker constant for parameteriz-
ing vdW interactions in the particle PMF (Eq. 1 in the main text)
is A = π24σ6np(nwepw − nlepl), where np = 1/σ3 is the particle
number, density, nw is the wall number density, epw is the (pair-
wise) particle-wall LJ energy, and nl = 0.8/σ3 is the (bulk) liquid
number density. For the prescribed wall and fluid density, the
(particle-wall) LJ energy is varied to produce the Hamaker con-
stant values reported for the studied cases (cf. Figs. 3-4 in the
main text).

All the MD simulations are performed in the NVT ensemble
in a fully periodic domain (see Fig. 2a in the main text) with a
Nose-Hoover thermostat to control the system temperature. For
the modeled conditions the liquid has a bulk number density
nl = 0.8/σ3 and a shear viscosity µ = 2.1

√
mkBT/σ2 4,5. The free-

space particle diffusivity in MD simulations is determined from
linear fits to the mean square displacement of the modeled quasi-
spherical nanoparticles (R = 3 & 6 σ) in a fully periodic simula-
tion box (Lx = Ly = Lz = 80σ) without solid walls. We find that the
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Stokes-Einstein relation D = 6πµRh/(kBT ) with a hydrodynamic
radius Rh =R+2σ accounts for the particle diffusivity determined
in free-space MD simulations within a 15% relative error for all
studied cases and it is therefore used in the Smoluchwoski equa-
tion (Eq. 5 in the main text).
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Fig. 1 Liquid number density pro�le n(y) for three di�erent solid-liquid in-

teraction energies ewl = 0.5-1 kBT . The right panel shows an orthographic

side view of the liquid atoms near the modeled plane wall (ewl = kBT ).

Interfacial energy To determine the solid-liquid interfacial en-
ergy for the modeled LJ interaction energies we perform a set
of simulations with the quiescent liquid confined by the plane
wall as reported in Fig. 2a in the main text with dimensions
Lx = Lz = 100σ and Ly = 20σ . As reported in Fig. 1, the modeled
liquid form solvation layers with a thickness comparable to the
liquid molecule diameter σ . We compute the equilibrium num-
ber density profile n(y) =

∫∫
n(x,y,z)dxdz/(LxLz) in the liquid (see

Fig. 1) and determine the solid-liquid interfacial surface energy
γ = −kBT

∫ Ly/2
0 n log(n/nl)dy from the energy required to remove

the wetting liquid under equilibrium conditions6,7. The solid-
liquid interfacial energies thus computed are γ ≃ -0.23, -0.34, &
-0.6 kBT for the employed LJ interaction energies ewl = 0.5, 0.75,
& 1 kBT , respectively (cf. Fig. 1). The liquid-solid interfacial ener-
gies γ thus computed for a plane wall are employed to determine
the wall-liquid and particle-liquid interfacial surface energies em-
ployed in analytical expressions and numerical solutions of the
Smoluchowski equation reported in Figs. 3-4 in the main text.
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