Ruptured Liquid Metal Microcapsules Enabling Hybridized Silver

Nanowire Networks Towards High-Performance Deformable

Transparent Conductors

Shipeng Wang¹[¶], Huaisen Tian¹[¶], Yawen Wang², Haojie Zuo², Chengliang Tao¹, Jiawei

Liu¹, Pengyuan Li¹, Yan Yang¹, Xu Kou¹, Jiangxin Wang^{1*}, Wenbin Kang^{2*}

 ¹ School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
 ² State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China

[¶] These authors contributed equally to this manuscript

* Corresponding Email: <u>wenbin.kang@swust.edu.cn</u>; <u>wangjiangxin@scu.edu.cn</u>

Supplementary Information

Method	Features	R _s (ohm	R _s (ohm	Т	Tran	Mechanical	Ref
		sq ⁻¹),	sq ⁻¹),	(%)	sfer-	and	
		before	after		free	Chemical	
						Enhancement	
Heat treatment	Low consumption, fast,	30	10	85	Ν	Ν	1
	precise temperature						
	control, unsuitable for						
	heat-sensitive substrates						
Chemically	Energy-saving, large-	7.06×10^{3}	11.2	72	Ν	Ν	2
welding	scale fabrication, adding						
	additional material						
Plasmonic	Low temperature, fast,	120	19	98	Ν	Ν	3
treatment	specialized equipment						
Mechanical	Cold welding, simple,	1.8×10^{4}	8.6	-	Ν	Ν	4
pressing	high pressure, damage to						
	the device structure						
Capillary-force-	Room temperature,	7×10 ³	150	83	N	Ν	5
induced	simple, efficiently,						
welding	specific hydrophobic						
	substrates and solution						
	viscosities						
Laser nano-	Fast-process, efficiently,	87	25	94	Ν	Ν	6
welding	expensive equipment,						
	unsuitable for large-scale						
	manufacturing						
Atomic layer	Specific equipment,	75	9	72	Y	-	7
deposition	complex process						
	conditions, unsuitable for						
	large-scale						
	manufacturing						
This work	Room temperature, fast,	132	10	74	Y	Y	
	energy-saving						

Table S1 List of representative welding treatment methods

Fig. S1. The SEM image of the cross-sectional view of the electrode to identify the thickness of the liquid metal overlay.

Fig. S2. (a, b) SEM images of AgNWs network after HCl-vapor treatment. (c) The sheet resistance of AgNWs network before and after HCl-vapor treatment.

Fig. S3. (a) LMMs distributed on glass substrate before HCl-vapor treatment. (b) LMMs distributed on glass substrate after HCl-vapor treatment.

Fig. S4. Transmittance and haze curves of transparent conductors before and after spraying LMMs.

Fig. S5. Sheet resistance and transmittance at different positions of AgNWs-LM conductor.

Testing name	Figure number	Sheet resistance (ohm sq ⁻¹)
chemical stability testing	Fig 2d	10~15
tape testing	Fig 2e	8.34
ultrasound testing	Fig 2f, Fig 2g	11.48 and 12.39
cyclic bending test	Fig 2h	12.74
comparison test with ITO	Fig 2i	18.65
The strain sensor	Fig 4	10~15

Table S2 List of sheet resistances of the samples for testing

Fig. S6. The sheet resistance of AgNWs-LM conductor and AgNWs network before and after HCl-vapor treatment.

Fig. S7. Conductivity stability of AgNWs-LM and AgNWs conductors in ambient air.

Fig. S8. (a, b) The SEM images of the surface of AgNWs-LM conductor before and after adhesion test. (c, d) The optical microscope images of the surface of AgNWs networks before and after adhesion test.

Fig. S9. The sheet resistance variation of the AgNWs-LM conductor after 60 seconds of ultrasonic treatment at varying power levels in IPA.

Fig. S10. The sheet resistance variation of the AgNWs-LM conductor under 600 W ultrasonic treatment in 20 mins in IPA.

Fig. S11. Photographs of a powered LED integrated with the ITO and AgNWs-LM conductor under different bending radius.

Fig. S12. The resistance changes of ITO and AgNWs-LM conductor under stretching.

Fig. S13. The stress-strain curve of ITO/PET.

Fig. S14. The stress-strain curve of AgNWs-LM/TPU.

Fig. S15. (a, b) SEM images of liquid metal wetted with copper nanowires after HCl-vapor treatment. (c) Sheet resistance of CuNWs-LM conductor and CuNWs network before and after HCl-vapor treatment.

Fig. S16. (a) The structure of the strain sensor. (b) The peel test curve of kinesiology tape.

References

1. A. Teymouri, S. Pillai, Z. Ouyang, X. Hao, F. Liu, C. Yan and M. A. Green, *ACS Appl. Mater. Interfaces*, 2017, **9**, 34093-34100.

- 2. L. Lian, X. Xi, D. Dong and G. He, Org. Electron., 2018, 60, 9-15.
- 3. J. H. Park, G. Hwang, S. Kim, J. Seo, H. Park, K. Yu, T. Kim and K. J. Lee, *Adv. Mater.*, 2017, **29**, 1603473.
- 4. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso and K. Suganuma, Nano Res., 2011,

4, 1215-1222.

5. Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu, S. Huang, C. F. Guo and Z. Ren, *Nano Lett.*, 2017, **17**, 1090-1096.

- 6. J. Ha, B. J. Lee, D. J. Hwang and D. Kim, *RSC Adv.*, 2016, **6**, 86232-86239.
- 7. Y. Weng, G. Chen, X. Zhou, Y. Zhang, Q. Yan and T. Guo, J. Mater. Sci., 2023, 58, 17816-17828.