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DFT adsorption calculations.

Several high-symmetry adsorption sites for the dye on the nanowire were evaluated using

DFT through the Quantum Espresso code.1 The GBRV pseudopotential library, which has

been optimised for precision and efficiency, was employed.2 The energy cutoff was fixed at
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50 Ry for the wave functions and 500 Ry for the charge density, with a Marzari–Vanderbilt

smearing of 0.01 Ry. A Monkhorst–Pack scheme was employed to sample the Brillouin zone

with 1×1×3 k-points for a 22.00×22.00×10.77 Å supercell, corresponding to the complex

C2. Relaxations were converged when forces acting on atoms were weaker than 0.02 eV/Å.

The resulting geometries and relative potential energies are presented in Figure S1.

(a) O-brg (b) Zn-brg (c) Zn-hlw (d) Zn-top

0.26 eV 0.03 eV 0.29 eV 0.00 eV

Fig. S1: Initial (top) and final (bottom) geometries of the dye relaxed at various adsorption
sites. The labeling is related to the atom of the nanowire at which the dye is bonded to
through its oxygen without hydrogen: oxygen-bridge (a), zinc-bridge (b), zinc-hollow (c),
and zinc-top. The potential energy of the relaxed structures relative to the most stable
configuration is also shown. Oxygen atoms in the dye are depicted in dark red to distinguish
them from the nanowire oxygen atoms. The Zn-top is the most stable configuration, which is
the one all our calculations are based on. In the case of the O-brg, the dye shifts to another
adsorption site similar to a zinc-bridge.
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Electronic structure calculations.

Band structure calculations for bare NWs.
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Fig. S2: Band structure for each bare NW. The unit cells employed (above) show different
lengths.

Calculation of Adsorption Energies for CAT-ZnO NW complexes.

The adsorption energies for CAT-ZnO NW complexes were determined using the following

equation:

Ead = ECAT+NW − ECAT − ENW (1)

where ECAT+NW is the total energy of the CAT- ZnO NW complex, ECAT is the total energy

of the CAT molecule, and ENW is the total energy of the ZnO NW under consideration.
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Representation of molecular orbitals.
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Fig. S3: Valence band structure and Γ-point molecular orbitals schematic of the lowest (a)
and highest (b) covering systems (C1 and C6, respectively).

Fig. S3 shows the valence band and molecular orbitals of the three highest energy bands

for both the C1 and C6 systems. It is important to note that bands with no dispersion are

correlated with molecular orbitals that mainly include contributions from CAT. Conversely,

bands that show dispersion are associated with NW orbitals. The dispersion of the bands is

determined by the separation between CATs in adjacent unit cells.
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Fig. S4: Molecular orbitals representation of the most energetic bands of the valence band
(at Γ point) for each complex. The edge valence band is shown in green (a), the next one in
red (b) and the third one in violet (c).
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Excited state calculations.

Spectra k-points convergence.
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Fig. S5: Electronic spectra for the C1 system using different numbers of k-points to sample
the non-periodic direction of the first Brillouin zone. In all cases, an exponential damping
decay time of 20 fs was used.
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Isolated CAT spectrum.
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Fig. S6: Optical absorption spectrum of isolated CAT obtained theoretically with DFTB+.
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Charge density difference plots
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Fig. S7: Charge density difference plots for C1 at 3 snapshots during electron dynamics at
(a) 3.08 eV and (b) 3.38 eV. Blue means charge accumulation and orange charge depletation.
The corresponding time of the snapshots is indicated within the plot. In the case of the laser
at 3.08 eV (a) there is a clear positive charge accumulation on the molecule, meanwhile an
electron injection to the nanowire can be observed. In the case of the laser at 3.38 eV (b),
no net charge transfer can be observed.

8



k-resolved dynamic band populations under photoexcitation of C1.

In Fig. S8(a), the plot of F (t, w) as a function of w (as described by equation 10 in the

following section) is presented at four different times. The band structure calculation (blue)

shows the temporal evolution of the populations at these four times (orange) using the

analytical model proposed in this work, which is based on the Fermi golden rule (it is shown

in Fig. S8(b)).
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Fig. S8: (a) F(t, w) versus frequency (w) for four times where t1 < t2 < t3 < t4. (b)
Calculations of the band structure (blue) and ∆P (orange) using the Fermi’s Golden Rule.

In Fig. S9, the band electron population difference (∆P) under excitation at energies of

3.50 eV, 3.70 eV, 3.83 eV (a), and 3.97 eV (c) is plotted for three different times: 12, 48 and

72 fs. As the irradiation energy increases, new transitions appear. Moreover, the excitations

originating from the lower energy bands show a tendency to move closer to the critical point
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Z while moving away from the Γ-point.
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Fig. S9: Plots of the band structure and ∆P of C1 generated by illuminating the system
with laser energies of 3.50 eV, 3.70 eV, 3.83 eV and 3.97 eV at three different times: ∆P−
in blue and ∆P+ in red.
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Derivation of Fermi’s Golden Rule model.

The time evolution of electronic populations upon application of a continuous laser in the

C1 complex can be analyzed using the real-time TD-DFTB method (see Fig. 4 in the

manuscript). We proposed a simple analytical model based on the Fermi Golden Rule,

which allows us to understand the changes in the populations. In this case, the initial state

is the valence band edge, and the final state is the conduction band edge. To capture the

dynamics of the system, we use the time-dependent Schrödinger equation:

H|Ψ(t)⟩ = [H0 +W (t)]|Ψ(t)⟩ = ih̄
∂|Ψ(t)⟩

∂t
, (2)

where the Hamiltonian, denoted as H, is H = H0 + W (t). Here, H0 is the unperturbed

Hamiltonian and W (t) is the time-dependent perturbation that is applied to the system.

The state of the system at time t, denoted as |Ψ⟩, can be expressed as a linear combination

of basis functions ϕn:

|Ψ(t)⟩ =
∑
n

cn(t)|Ψ(t)⟩ =
∑
n

cn(t)|ϕn⟩e
−iEnt

h̄ . (3)

By inserting the equation 3 into 2 and projecting to ϕn we obtain:

∂cn(t)

∂t
=

1

ih̄

∑
k

ck(t)Wnk(t)e
iwnkt, (4)

where Wnk represents the perturbation matrix elements, calculated as ⟨ϕn|W (t)|ϕk⟩. Ad-

ditionally, wnk is En−Ek

h̄
. To determine the coefficients of equation 4, we make certain as-

sumptions. First, at t = 0, we assume that all coefficients in t = 0 are zero, except for ci:

cj (t = 0) = δij. Moreover, we assume that the perturbation applied is weak and of short

duration, resulting in minimal changes in the coefficients. Consequently, the equation 4 can

be simplified as follows:

∂cn(t)

∂t
=

1

ih̄
ci(t)Wni(t)e

iwnit, (5)
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for any final state the coefficient will be:

cf (t) =
1

ih̄

∫ t

0

Wfi(t
′)eiwfit

′
dt′. (6)

The probability of finding the system in the eigenstate |ϕf⟩ (using the equation 6) is:

Pif (t) =
1

h̄2

∣∣∣∣∫ t

0

Wfi(t
′)eiwfit

′
dt′

∣∣∣∣2 . (7)

An oscillating perturbation (such as a laser) is defined as W (t) = 2W cos(wt) = W (eiwt+

e−iwt) and inserting this equation into 6 we get:

cf (t) =
Wfi

ih̄

{
ei(wfi+w)t − 1

i(wfi + w)
+

ei(wfi−w)t − 1

i(wfi − w)

}
. (8)

Introducing the function F (t, w − wfi), the equation 7 becomes:

Pif (t) =
W 2

fi

h̄2

∣∣∣∣ei(wfi+w)t − 1

i(wfi + w)
+

ei(wfi−w)t − 1

i(wfi − w)

∣∣∣∣2 (9)

=
W 2

fi

h̄2 F (t, w − wfi). (10)

When the final state is part of a continuum of states, the probability is determined by

integrating the equation 10 with respect to the density of states function, denoted as DOS(E).

The integration is performed by weighting each energy value with the corresponding DOS(E):

P (t) =

∫
Eacc

Pif (t)DOS(E)dE, (11)

where Eacc represents the set of all states to which the system can transition under the

influence of the perturbation. By substituting equation 10 into equation 11, we arrive at the

following expression:

P (t) =

∫
Eacc

W 2
fi

h̄2 F (t, w − wfi)DOS(E)dE. (12)
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Due to the narrow range of energies involved, we can treat the matrix element Wfi and the

density of states DOS(E) as constants. As a result, the probability can be expressed as an

integral of the function F (t, w − wfi):

P (t) =
W 2

fi

h̄2 DOS(E)

∫
Eacc

F (t, w − wfi) dE (13)
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